Self-learning abilities in autonomous systems are essential to improve their situational awareness and detection of normal/abnormal situations. In this work, we propose a graph matching technique for activity detection in autonomous agents by using the Gromov-Wasserstein framework. A clustering approach is used to discretise continuous agents' states related to a specific task into a set of nodes with similar objectives. Additionally, a probabilistic transition matrix between nodes is used as edges weights to build a graph. In this paper, we extract an abnormal area based on a sub-graph that encodes the differences between coupled of activities. Such sub-graph is obtained by applying a threshold on the optimal transport matrix, which is obtained through the graph matching procedure. The obtained results are evaluated through experiments performed by a robot in a simulated environment and by a real autonomous vehicle moving within a University Campus.
In autonomous systems, self-awareness capabilities are useful to allow artificial agents to detect abnormal situations based on previous experiences. This paper presents a method that facilitates the incremental learning of new models by an agent. Available learned models can dynamically generate probabilistic predictions as well as evaluate their mismatch from current observations. Observed mismatches are grouped through an unsupervised learning strategy into different classes, each of them corresponding to a dynamic model in a given region of the state space. Such clusters define switching Dynamic Bayesian Networks (DBNs) employed for predicting future instances and detect anomalies. Inferences generated by several DBNs that use different sensorial data are compared quantitatively. For testing the proposed approach, it is considered the multisensorial data generated by a robot performing various tasks in a controlled environment and a real autonomous vehicle moving at a University Campus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.