In this work, carbon nanotubes (CNTs) reinforced aluminum (Al) matrix composites are synthesized using Bc equal-channel angular extrusion (ECAP) route and their mechanical behavior is examined under compression and shear deformation. The results show that at room temperature, eight ECAP passes are necessary to achieve the density of the composite where the effect of CNTs in enhancing the mechanical properties become significant. Samples of pure Al are also processed under the same ECAP conditions, and their properties are further examined to facilitate the comparison. The well-densified composites with only 2 vol. % of CNTs exhibit an approximately 30% increase in yield strength compared to the pure Al samples. Microstructure data in terms of porosity volume fraction, crystallite size, and dislocation density, along with the residual lattice strain measurements, are used to explain the observed improvements in strength. As measured by X-ray diffraction (XRD), higher levels of dislocation density, smaller crystallite sizes, and larger residual lattice strains are present in Al-CNT than in pure Al samples. Finally, fractographic analysis using scanning electron microscopy is performed revealing that the fracture surfaces of the composite exhibit a more brittle behavior than pure Al samples.
a b s t r a c tIn this work, 2 vol% carbon nanotubes (CNTs) reinforced aluminum (Al) matrix composites of superior microstructural homogeneity are successfully synthesized using Bc equal-channel angular extrusion (ECAP) route. The key step in arriving at high level of homogeneous distribution of CNTs within Al was preparation of the powder using simultaneous attrition milling and ultra-sonication processes. Microstructure as revealed by electron microscopy and absence of Vickers hardness gradients across the material demonstrate that the material reached the homogeneous state in terms of CNT distribution, porosity distribution, and grain structure after eight ECAP passes. To facilitate comparison of microstructure and hardness, samples of Al were processed under the same ECAP conditions. Significantly, the composite containing only 2 vol% exhibits 20% increase in hardness relative to the Al samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.