In this paper, fatigue life, crack growth trajectory, and stress intensity factors of top‐down and bottom‐up cracks have been investigated in a multilayered asphalt pavement using numerical method. Finite element models, Paris law, and maximum tangential stress criteria were used to determine the effects of vehicle position, thickness, and stiffness of layers on fatigue life of pavements. The results show that the minimum fatigue life of pavements with top‐down crack occurs when the wheels are symmetrically located relative to the crack plane. On the other side, in pavements with bottom‐up crack, it occurs when the front tire located on top of the crack. Moreover, the result reveals that the top‐down crack grows slower than bottom‐up crack. Also, the surface layer's stiffness has the most effect on fatigue life of pavement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.