To ensure the secure operation of a multiterminal high-voltage DC (MTDC) grid, power flow controllers (PFCs) are deployed to regulate current distribution among different transmission lines. Besides power flow management, PFCs are envisioned to provide a range of functionalities such as stability enhancement, oscillation damping, and ancillary services to the host MTDC grid. This paper extends the functionality of PFC to provide active damping of MTDC grid current oscillations caused by dc side resonance. Three simple and effective active compensators integrated with the control scheme of the PFC are proposed. A comprehensive small-signal model of the MTDC grid is developed. Eigenvalue and sensitivity analyses are conducted to evaluate the damping capability of the proposed compensators and assess their dynamic coupling with PFC control loops. Based on a detailed model of a five-terminal high-voltage dc grid, simulation results are provided to evaluate the performance and effectiveness of the proposed active compensators. The results showed the effectiveness of the proposed compensation schemes to increase the damping of the MTDC grid and enhance its dynamic response.
DC circuit breakers are required to interrupt dc faults in multi-terminal HVDC (MTDC) grids. Consequently, their current limiting inductors can substantially impact the dynamic performance and stability of MTDC grids. However, the literature does not address the assessment and mitigation of dc breaker inductance impacts on the stability of an MTDC grid equipped with a power flow controller (PFC). To fill in this gap, this paper evaluates the effects of dc breaker inductance on the stability of a PFC-equipped MTDC grid. Furthermore, the paper expands the capability of the PFC via the development of a PFC-based damping controller to improve the dynamic performance of the MTDC grid and enhance its damping. First, a comprehensive small-signal model of the PFC-equipped MTDC grid is developed. Then, eigenvalue and frequency response analyses are employed to assess the dynamic performance and stability of the MTDC grid, considering the effects of breakers inductances, PFC and converter station control parameters, and network parameter uncertainty. Finally, time-domain simulations and hardware-inthe-loop real-time simulations are carried out to evaluate the performance of the proposed damping controller and verify the theoretical analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.