In a previous work, we have derived the general solution of the state space linear fractional system of commensurate order for real simple and multiple eigenvalues of the state space matrix. The obtained solutions of the homogeneous and non-homogeneous cases have been expressed as a linear combination of introduced fundamental functions. In this paper, the above work has been extended to solve the state space linear fractional system of commensurate order for complex eigenvalues of the state space matrix. First, suitable fundamental functions corresponding to the different types of complex eigenvalues of the state space matrix are introduced. Then, the derived formulations of the resolution approach are presented for the homogeneous and the nonhomogeneous cases. The solutions are expressed in terms of a linear combination of the proposed fundamental functions which are in the form of exponentials, sine, cosine, damped sine and damped cosine functions depending on the commensurate fractional order. The results are validated by solving an illustrative example to demonstrate the effectiveness of the proposed analytical tool for the solution of the state space linear fractional system of commensurate order.
This paper deals with the rational function approximation of the irrational transfer func-, for 0 < m < 1 and 0 < ζ < 1. An approximation method by a rational function, in a given frequency band, is presented and the impulse and the step responses of this fractional order system are derived. Illustrative examples are also presented to show the exactitude and the usefulness of the approximation method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.