Background and objectives Evaluation of glomerular hyperfiltration (GH) is difficult; the variable reported definitions impede comparisons between studies. A clear and universal definition of GH would help in comparing results of trials aimed at reducing GH. This study assessed how GH is measured and defined in the literature.Design, setting, participants, & measurements Three databases (Embase, MEDLINE, CINAHL) were systematically searched using the terms "hyperfiltration" or "glomerular hyperfiltration". All studies reporting a GH threshold or studying the effect of a high GFR in a continuous manner against another outcome of interest were included.Results The literature search was performed from November 2012 to February 2013 and updated in August 2014. From 2013 retrieved studies, 405 studies were included. Threshold use to define GH was reported in 55.6% of studies. Of these, 88.4% used a single threshold and 11.6% used numerous thresholds adapted to participant sex or age. In 29.8% of the studies, the choice of a GH threshold was not based on a control group or literature references. After 2004, the use of GH threshold use increased (P,0.001), but the use of a control group to precisely define that GH threshold decreased significantly (P,0.001); the threshold did not differ among pediatric, adult, or mixedage studies. The GH threshold ranged from 90.7 to 175 ml/min per 1.73 m 2 (median, 135 ml/min per 1.73 m 2 ).Conclusion Thirty percent of studies did not justify the choice of threshold values. The decrease of GFR in the elderly was rarely considered in defining GH. From a methodologic point of view, an age-and sex-matched control group should be used to define a GH threshold.
Cardiovascular and chronic kidney diseases are part of non-communicable chronic diseases, the leading causes of premature death worldwide. They are recognized as having early origins through altered developmental programming, due to adverse environmental conditions during development. Preterm birth is increasingly recognized as such an adverse factor. Rates of preterm birth have increased the last decades, however, with the improvement in perinatal and neonatal care, a growing cohort have survived to the neonatal period and are now entering adulthood. Clinical and experimental evidence suggests that preterm birth is associated with impaired or arrested structural or functional development of key organs/systems making preterm infants vulnerable to cardiovascular and chronic renal diseases at adulthood. This review analyzes the evidence of cardiovascular and renal changes, the role of perinatal and neonatal factors and potential pathogenic mechanisms, including developmental programming and epigenetic alterations. While antenatal steroids have considerably improved preterm birth outcomes, repeated therapy should be considered with caution, as antenatal steroids induce long term cardio-vascular and metabolic alterations in animals' models and their involvement in the accelerated cellular senescence observed in human studies cannot be excluded.
The most widely used formula for estimating glomerular filtration rate (eGFR) in children is the Schwartz formula. It was revised in 2009 using iohexol clearances with measured GFR (mGFR) ranging between 15 and 75 ml/min × 1.73 m(2). Here we assessed the accuracy of the Schwartz formula using the inulin clearance (iGFR) method to evaluate its accuracy for children with less renal impairment comparing 551 iGFRs of 392 children with their Schwartz eGFRs. Serum creatinine was measured using the compensated Jaffe method. In order to find the best relationship between iGFR and eGFR, a linear quadratic regression model was fitted and a more accurate formula was derived. This quadratic formula was: 0.68 × (Height (cm)/serum creatinine (mg/dl))-0.0008 × (height (cm)/serum creatinine (mg/dl))(2)+0.48 × age (years)-(21.53 in males or 25.68 in females). This formula was validated using a split-half cross-validation technique and also externally validated with a new cohort of 127 children. Results show that the Schwartz formula is accurate until a height (Ht)/serum creatinine value of 251, corresponding to an iGFR of 103 ml/min × 1.73 m(2), but significantly unreliable for higher values. For an accuracy of 20 percent, the quadratic formula was significantly better than the Schwartz formula for all patients and for patients with a Ht/serum creatinine of 251 or greater. Thus, the new quadratic formula could replace the revised Schwartz formula, which is accurate for children with moderate renal failure but not for those with less renal impairment or hyperfiltration.
Abstract:Individuals born after intrauterine growth restriction (IUGR) have an increased risk of perinatal morbidity/mortality, and those who survive face long-term consequences such as cardiovascular-related diseases, including systemic hypertension, atherosclerosis, coronary heart disease, and chronic kidney disease. In addition to the demonstrated long-term effects of decreased nephron endowment and hyperactivity of the hypothalamic-pituitary-adrenal axis, individuals born after IUGR also exhibit early alterations in vascular structure and function, which have been identified as key factors of the development of cardiovascular-related diseases. The endothelium plays a Cambridge University Press Developmental Origins of Health and Disease -For Peer Review
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.