Synthetic aperture (SA) technique is very attractive for ultrafast ultrasound imaging, as the entire medium can be insonified by a single emission. It also permits applying the dynamic focusing as well as adaptive beamforming both in transmission and reception, which results in an enhanced image. In this paper, we firstly show that the problem of designing the transmit and receive beamformers in SA structure can be formulated as a problem of designing a one-way beamformer on a virtual array with a lateral response equal to that of the two-way beamformer on SA. It is also demonstrated that the length of the virtual aperture is increased to the sum of the transmit aperture length and the receive one, which can result in an enhanced resolution. Moreover, a better estimation of the covariance matrix can be obtained which can be utilized for applying adaptive minimum variance (MV) beamforming method on the virtual array, and consequently the resolution and contrast properties would be enhanced. The performance of the new method is compared with other existing MV-based methods and is quantified by some metrics such as the full width at half maximum (FWHM) and generalized contrast to noise ratio (GCNR). Our validations on simulations and experimental data have shown that the new method is capable of obtaining higher GCNR values while retaining or decreasing FWHM values almost all the time. Moreover, for the same subarray length for estimating the covariance matrices, the computational burden of the new method is significantly lower than those of the existing rival methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.