The Miombo woodland is the most extensive tropical woodland in south-central Africa. However, field sample plot data on forest cover changes, species distribution and carbon stocks in the Miombo ecoregion are inadequate for effective forest management. Owing to logistical challenges that come with field-based inventory methods, remote sensing plays an important role in supplementing field methods to fill in data gaps. Traditional satellite and manned aircraft remote sensing platforms have their own advantages and limitations. The advent of unmanned aerial systems (UASs) has made it possible to acquire forest data at unprecedented spatial and temporal scales. UASs are adaptable to various forest applications in terms of providing flexibility in data acquisition with different sensors (RGB, multispectral, hyperspectral, thermal and light detection and ranging (lidar)) at a convenient time. To highlight possible applications in the Miombo woodlands, we first provide an overview of the Miombo woodlands and recent progress in remote sensing with small UASs. An overview of some potential forest applications was undertaken to identify key prospects and challenges for UAS applications in the Miombo region, which will provide expertise and guidance upon which future applications in the Miombo woodlands should be based. While much of the potential of using UASs for forest data acquisition in the Miombo woodlands remains to be realized, it is likely that the next few years will see such systems being used to provide data for an ever-increasing range of forest applications.
Accurate maps of tree species distributions are necessary for the sustainable management of forests with desired ecological functions. However, image classification methods to produce species distribution maps for supporting sustainable forest management are still lacking in the Miombo woodland ecoregion. This study used multi-date multispectral Unmanned Aerial Systems (UAS) imagery collected at key phenological stages (leaf maturity, transition to senescence, and leaf flushing) to classify five dominant canopy species of the wet Miombo woodlands in the Copperbelt Province of Zambia. Object-based image analysis (OBIA) with a random forest algorithm was used on single date, multi-date, and multi-feature UAS imagery for classifying the dominant canopy tree species of the wet Miombo woodlands. It was found that classification accuracy varies both with dates and features used. For example, the August image yielded the best single date overall accuracy (OA, 80.12%, 0.68 kappa), compared to October (73.25% OA, 0.59 kappa) and May (76.64% OA, 0.63 kappa). The use of a three-date image combination improved the classification accuracy to 84.25% OA and 0.72 kappa. After adding spectral indices to multi-date image combination, the accuracy was further improved to 87.07% and 0.83 kappa. The results highlight the potential of using multispectral UAS imagery and phenology in mapping individual tree species in the Miombo ecoregion. It also provides guidance for future studies using multispectral UAS for sustainable management of Miombo tree species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.