Life Cycle Assessment (LCA) is a tool that can help to quantify the impacts of different processes to facilitate comparison and decision making. There are many potential methods for managing plastic waste, but it can be difficult to determine which methods are preferable in terms of environmental impact. Suitable existing LCA studies are identified through a screening process and the methodologies used and their outputs are compared. When undertaking an LCA, the researchers must define their scope and select their parameters, according to their aims and context, which leads to a wide variation in the approach taken. In this study, six parameters have been considered to analyze research progress in these fields regarding LCA, i.e., goals and scope, functional units, impact assessment categories, system boundaries, geographical context, and uncertainty analysis. These studies include the similar type of different studies considering plastic waste recycling, each taking a different approach to defining the system boundaries, revealing how the decision to include or exclude factors such as transport can have a significant impact on the outcomes. Additionally, compared to these similar studies on mixed-plastic waste management, different available options are used to quantitatively compare the impact outcomes, revealing how the context and parameter selection can affect the results. This review aims to highlight the prospect of LCA during the development of a waste management framework as an efficient waste recycling tool and recommend a research gap for the development of an improved management framework in the future.
Numerous environmental issues arise as a result of a linear economy strategy: reserves become scarce and end up in landfills and as greenhouse gases. Utilizing waste as a resource or shifting towards a circular economy are among the effective strategies for addressing these issues. To track this shift, appropriate measures that concentrate on sustainable development while taking practical contexts into consideration are required. In this paper, we utilize plastic wastes as a replacement for bitumen for reuse aiming at a circular economy. The use of plastic waste materials, i.e., plastic bottles (PET) and gas pipes (PE) in asphalt materials as a bitumen modifier was studied through series of experimental lab test methods. Marshall samples were prepared using a conventional Marshall method containing five different percentages (0%, 5%, 10%, 15%, and 20%) of plastic content by total weight of bitumen. Samples were tested after 1 and 30 days and the result shows that the stability of plastic-modified asphalt concrete was increased after 30 days, while still meeting standard criteria with plastic contents up to 20%. Moreover, the addition of waste plastic in road construction is a very effective strategy for reusing plastic waste, which also provides economic and social benefits for a sustainable approach to road pavements.
The building and construction sector has a huge impact on the environment because of the enormous amounts of natural resources and energy consumed during the life cycle of construction projects. In this study, we evaluated the potential environmental impact of the construction of a villa, from cradle to grave, in the Saudi Arabian context. Centrum voor Milieukunde Leiden (CML) for Centre of Environmental Science of Leiden University-IA baseline v3.03 methods were used to obtain the environmental profile for the impact categories, and Cumulative Energy Demand v1.09 was used to measure the embodied energy of the villa life cycle. The analyzed midpoint impact categories include global warming (GWP100a), ozone layer depletion (ODP), acidification (AP), eutrophication (EP), photochemical oxidation (POCP), and indicator cumulative energy demand (CED). The operation use phase of the villa was found to have the highest global warming potential and acidification with 2.61 × 106 kg CO2-eq and 1.75 × 104 kg SO2-eq, respectively. Sensitivity analysis was performed on the Saudi Arabian plans to increase the share of renewable sources and reduce the amount of electricity generated from hydrocarbons, which currently represents 46% of the total installed power, by 2032. The results showed that compared with the current electricity environmental impact, the CO2 emission from electricity will decrease by 53%, which represents a significant reduction in environmental impact. The findings will help with the life cycle assessment of structures during future planning and for energy conservation.
Polymer composites have been identified as the most innovative and selective materials known in the 21st century. Presently, polymer concrete composites (PCC) made from industrial or agricultural waste are becoming more popular as the demand for high-strength concrete for various applications is increasing. Polymer concrete composites not only provide high strength properties but also provide specific characteristics, such as high durability, decreased drying shrinkage, reduced permeability, and chemical or heat resistance. This paper provides a detailed review of the utilization of polymer composites in the construction industry based on the circular economy model. This paper provides an updated and detailed report on the effects of polymer composites in concrete as supplementary cementitious materials and a comprehensive analysis of the existing literature on their utilization and the production of polymer composites. A detailed review of a variety of polymers, their qualities, performance, and classification, and various polymer composite production methods is given to select the best polymer composite materials for specific applications. PCCs have become a promising alternative for the reuse of waste materials due to their exceptional performance. Based on the findings of the studies evaluated, it can be concluded that more research is needed to provide a foundation for a regulatory structure for the acceptance of polymer composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.