MicroRNAs (miRNAs) play important roles during development and also in adult organisms by regulating the expression of multiple target genes. Here, we studied the function of miR-133b during zebrafish spinal cord regeneration and show upregulation of miR-133b expression in regenerating neurons of the brainstem after transection of the spinal cord. miR-133b has been shown to promote tissue regeneration in other tissue, but its ability to do so in the nervous system has yet to be tested. Inhibition of miR-133b expression by anti-sense morpholino (MO) application resulted in impaired locomotor recovery and reduced regeneration of axons from neurons in the NMLF (nucleus of the medial longitudinal fascicle), SRF (superior reticular formation), and IMRF (intermediate reticular formation). miR-133b targets the small GTPase RhoA, which is an inhibitor of axonal growth, as well as other neurite outgrowth-related molecules. Our results indicate that miR-133b is an important determinant in spinal cord regeneration of adult zebrafish through reduction of RhoA protein levels by direct interaction with its mRNA. While RhoA has been studied as a therapeutic target in spinal cord injury, this is the first demonstration of endogenous regulation of RhoA by a microRNA that is required for spinal cord regeneration in zebrafish. The ability of miR-133b to suppress molecules that inhibit axon regrowth may underlie the capacity for adult zebrafish to recover locomotor function after spinal cord injury (SCI).
Acute lymphoblastic leukemia (ALL) is a clonal disease that evolves through the accrual of genetic rearrangements and͞or mutations within the dominant clone. The TEL-AML1 (ETV6-RUNX1) fusion in precursor-B (pre-B) ALL is the most common genetic rearrangement in childhood cancer; however, the cellular origin and the molecular pathogenesis of TEL-AML1-induced leukemia have not been identified. To study the origin of TEL-AML1-induced ALL, we generated transgenic zebrafish expressing TEL-AML1 either ubiquitously or in lymphoid progenitors. TEL-AML1 expression in all lineages, but not lymphoid-restricted expression, led to progenitor cell expansion that evolved into oligoclonal B-lineage ALL in 3% of the transgenic zebrafish. This leukemia was transplantable to conditioned wildtype recipients. We demonstrate that TEL-AML1 induces a B cell differentiation arrest, and that leukemia development is associated with loss of TEL expression and elevated Bcl2͞Bax ratio. The TEL-AML1 transgenic zebrafish models human pre-B ALL, identifies the molecular pathways associated with leukemia development, and serves as the foundation for subsequent genetic screens to identify modifiers and leukemia therapeutic targets.stem cell ͉ translocation ͉ childhood cancer ͉ genetics T he TEL-AML1 fusion generated by the t(12, 21)(p13;q22) chromosomal translocation is present in 25% of childhood pre-B acute lymphoblastic leukemia (ALL), making it the most common genetic rearrangement in childhood cancer (1-3). The translocation fuses the first five exons of the Ets transcription factor TEL (also known as ETV6) in-frame to nearly the entire AML1 gene (also known as RUNX1). Retrospective studies in twins with pre-B ALL, as well as Guthrie cards studies from 567 normal newborns (4), reveal that the TEL-AML1 fusion occurs in utero, with a protracted time course for leukemia development (5, 6).Murine studies involving TEL-AML1 suggest that this fusion protein confers a low transforming ability. Transgenic mice expressing TEL-AML1 from the Ig heavy chain promoter (E) did not develop any hematological disorder (7). Mice transplanted with bone marrow cells transduced with retroviral vectors expressing TEL-AML1 developed a preleukemic state without occult leukemia (8-10). The incidence of leukemia in such mice increased only in the presence of cooperating mutations (11).The cell initially transformed by TEL-AML1 remains to be elucidated; however, in ALL patients, the TEL-AML1 fusion event precedes differentiation of lymphoid progenitors to pre-B cells (12). This finding confines the origin of pre-B ALL to a B-lineage restricted progenitor(s) (4) or a multipotent hematopoietic stem cell (HSC) with preferential B-lymphoid clonal expansion (13).We used the zebrafish to study TEL-AML1 leukemogenesis for several reasons. First, the zebrafish has well conserved genetic processes controlling hematopoesis (14, 15). Second, zebrafish develop tumors that are histologically similar to human tumors (16)(17)(18)(19)(20). The lymphoid expression of mouse c-Myc led to...
These results suggest that HO-2 is constitutively expressed in the rat kidney mainly within tubular and arteriolar structures, and its activity may modulate physiological function under basal conditions. On the other hand, the basal levels of expression of HO-1 in the rat kidney are relatively low, and its contribution to HO activity and the regulation of hemoproteins such as cytochrome P450 become apparent only under pathophysiological conditions causing HO induction.
Heme oxygenase (HO) catalyzes the conversion of heme to biliverdin, with release of free iron and carbon monoxide. Both heme and carbon monoxide have been implicated in the regulation of vascular tone. A retroviral vector containing human HO-1 cDNA (LSN-HHO-1) was constructed and subjected to purification and concentration of the viral particles to achieve 5x10(9) to 1x10(10) colony-forming units per milliliter. The ability of concentrated infectious viral particles to express human HO-1 (HHO-1) in vivo was tested. A single intracardiac injection of the concentrated infectious viral particles (expressing HHO-1) to 5-day-old spontaneously hypertensive rats resulted in functional expression of the HHO-1 gene and attenuation of the development of hypertension. Rats expressing HHO-1 showed a significant decrease in urinary excretion of a vasoconstrictor arachidonic acid metabolite and a reduction in myogenic responses to increased intraluminal pressure in isolated arterioles. Unexpectedly, HHO-1 chimeric rats showed a simultaneous significant proportionate increase in somatic growth. Thus, delivery of HHO-1 gene by retroviral vector attenuates the development of hypertension and promotes body growth in spontaneously hypertensive rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.