Based on a comprehensive review of both previous studies and implemented practices in the field of construction structures, it’s obvious that reinforcing steel bar’s length is limited. Consequently, lap-splices are commonly used in reinforced concrete (RC) structures to solve such problem. Generally, in the design process,safety and serviceability must be satisfied. In essence, in beams with lap splices it’s important to check the ductility, since some variables as fire of RC beams can change the behavior. The present paper aims to validate the effect of fire on the flexural ductility behavior of reinforced concrete beam with lap splice. An experimentaltest Program of thirteen simply supported RC beams with lap-splices were designed, cast and tested in laboratory. The main selected variables are: concrete cover, temperature and fire exposure duration. Results show that; under fire effect with different concrete cover, duration and temperature over the lap-splices zone has major effects on the ductility of RC beams. As, the ductility of beams decreases when the temperature and fire duration increases. Furthermore, ductility of RC beams increases as concrete cover increases under similar conditions. Collectively,this study shows that the fire has a major effect on the bond strength of lap-spliced RC beams and ductility has different behavior when compared with non-fired beam. Consequently, codes have to take fire effects on the lapsplice in design process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.