Abstract. The emergence and continuing use of multi-core architectures and graphics processing units require changes in the existing software and sometimes even a redesign of the established algorithms in order to take advantage of now prevailing parallelism. Parallel Linear Algebra for Scalable Multi-core Architectures (PLASMA) and Matrix Algebra on GPU and Multics Architectures (MAGMA ) are two projects that aims to achieve high performance and portability across a wide range of multi-core architectures and hybrid systems respectively. We present in this document a comparative study of PLASMA's performance against established linear algebra packages and some preliminary results of MAGMA on hybrid multi-core and GPU systems.
We present a method for developing dense linear algebra algorithms that seamlessly scales to thousands of cores. It can be done with our project called DPLASMA (Distributed PLASMA) that uses a novel generic distributed Direct Acyclic Graph Engine (DAGuE). The engine has been designed for high performance computing and thus it enables scaling of tile algorithms, originating in PLASMA, on large distributed memory systems. The underlying DAGuE framework has many appealing features when considering distributed-memory platforms with heterogeneous multicore nodes: DAG representation that is independent of the problem-size, automatic extraction of the communication from the dependencies, overlapping of communication and computation, task prioritization, and architecture-aware scheduling and management of tasks. The originality of this engine lies in its capacity to translate a sequential code with nested-loops into a concise and synthetic format which can then be interpreted and executed in a distributed environment. We present three common dense linear algebra algorithms from PLASMA (Parallel Linear Algebra for Scalable Multi-core Architectures), namely: Cholesky, LU, and QR factorizations, to investigate their data driven expression and execution in a distributed system. We demonstrate through experimental results on the Cray XT5 Kraken system that our DAG-based approach has the potential to achieve sizable fraction of peak performance which is characteristic of the state-of-the-art distributed numerical software on current and emerging architectures.
Abstract-Solving dense linear systems of equations is a fundamental problem in scientific computing. Numerical simulations involving complex systems represented in terms of unknown variables and relations between them often lead to linear systems of equations that must be solved as fast as possible. We describe current efforts toward the development of these critical solvers in the area of dense linear algebra (DLA) for multicore with GPU accelerators. We describe how to code/develop solvers to effectively use the high computing power available in these new and emerging hybrid architectures. The approach taken is based on hybridization techniques in the context of Cholesky, LU, and QR factorizations. We use a high-level parallel programming model and leverage existing software infrastructure, e.g. optimized BLAS for CPU and GPU, and LAPACK for sequential CPU processing. Included also are architecture and algorithm-specific optimizations for standard solvers as well as mixed-precision iterative refinement solvers. The new algorithms, depending on the hardware configuration and routine parameters, can lead to orders of magnitude acceleration when compared to the same algorithms on standard multicore architectures that do not contain GPU accelerators. The newly developed DLA solvers are integrated and freely available through the MAGMA library.
This paper introduces a novel implementation in reducing a symmetric dense matrix to tridiagonal form, which is the preprocessing step toward solving symmetric eigenvalue problems. Based on tile algorithms, the reduction follows a two-stage approach, where the tile matrix is first reduced to symmetric band form prior to the final condensed structure. The challenging trade-off between algorithmic performance and task granularity has been tackled through a grouping technique, which consists of aggregating fine-grained and memory-aware computational tasks during both stages, while sustaining the applications overall high performance. A dynamic runtime environment system then schedules the different tasks in an out-of-order fashion. The performance for the tridiagonal reduction reported in this paper is unprecedented. Our implementation results in up to 50-fold and 12-fold improvement (130 Gflop/s) compared to the equivalent routines from LAPACK V3.2 and Intel MKL V10.3, respectively, on an eight socket hexa-core AMD Opteron multicore shared-memory system with a matrix size of 24000 × 24000.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.