This note presents a control synthesis approach for discrete event systems modeled by marked graphs with uncontrollable transitions. The forbidden behavior is specified by General Mutual Exclusion Constraints (GMEC). We prove that, even if the system to be controlled is live, the closed loop control may generate deadlock situations. Using the structural proprieties of marked graph we defined the causes of deadlock situations, and we defined a formal method to avoid them.
Abstract. This note presents a control synthesis approach for discrete event systems modeled by marked graphs with uncontrollable transitions. The forbidden behavior is specified by General Mutual Exclusion Constraints (GMEC). We prove that, even if the system to be controlled is live, the closed loop control may generate deadlock situations. Using the structural proprieties of marked graph we defined the causes of deadlock situations, and we defined a formal method to avoid them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.