SUMMARY
Immune cells sense microbial products through Toll-like receptors (TLR), which trigger host defense responses including type 1 interferons (IFNs) secretion. A coding polymorphism in the protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene is a susceptibility allele for human autoimmune and infectious disease. We report that Ptpn22 selectively regulated type 1 IFN production after TLR engagement in myeloid cells. Ptpn22 promoted host antiviral responses and was critical for TLR agonist-induced, type 1 IFN-dependent suppression of inflammation in colitis and arthritis. PTPN22 directly associated with TNF receptor-associated factor 3 (TRAF3) and promotes TRAF3 lysine 63-linked ubiquitination. The disease-associated PTPN22W variant failed to promote TRAF3 ubiquitination, type 1 IFN upregulation, and type 1 IFN-dependent suppression of arthritis. The findings establish a candidate innate immune mechanism of action for a human autoimmunity “risk” gene in the regulation of host defense and inflammation.
These results suggest that serum IL-6 production and the type I IFN gene signature are candidate biomarkers for disease activity in adult and juvenile DM. Coregulation of the expression of IFN-driven chemokines and IL-6 suggests a novel pathogenic linkage in DM.
Gene expression profiling and protein studies of the type I interferon pathway have revealed important insights into the disease process in adult and juvenile dermatomyositis. The most prominent and consistent feature has been a characteristic whole blood gene signature indicating upregulation of the type I interferon pathway. Upregulation of the type I interferon protein signature has added additional markers of disease activity and insight into the pathogenesis of the disease.
Tillers are vegetative branches that develop from axillary buds located in the leaf axils at the base of many grasses. Genetic manipulation of tillering is a major objective in breeding for improved cereal yields and competition with weeds. Despite this, very little is known about the molecular genetic bases of tiller development in important Triticeae crops such as barley (Hordeum vulgare) and wheat (Triticum aestivum). Recessive mutations at the barley Uniculme4 (Cul4) locus cause reduced tillering, deregulation of the number of axillary buds in an axil, and alterations in leaf proximal-distal patterning. We isolated the Cul4 gene by positional cloning and showed that it encodes a BROAD-COMPLEX, TRAMTRACK, BRIC-À-BRAC-ankyrin protein closely related to Arabidopsis (Arabidopsis thaliana) BLADE-ON-PETIOLE1 (BOP1) and BOP2. Morphological, histological, and in situ RNA expression analyses indicate that Cul4 acts at axil and leaf boundary regions to control axillary bud differentiation as well as the development of the ligule, which separates the distal blade and proximal sheath of the leaf. As, to our knowledge, the first functionally characterized BOP gene in monocots, Cul4 suggests the partial conservation of BOP gene function between dicots and monocots, while phylogenetic analyses highlight distinct evolutionary patterns in the two lineages.
Objective
Muscle enzyme levels are insensitive markers of disease activity in juvenile and adult dermatomyositis (DM), especially during the active treatment phase. To improve our ability to monitor DM disease activity longitudinally, especially in the presence of immune modulating agents, we prospectively evaluated whether IFN-dependent peripheral blood gene and chemokine signatures could serve as sensitive and responsive biomarkers for change in disease activity in adult and juvenile DM.
Methods
Peripheral blood and clinical data were collected from 51 juvenile and adult DM subjects prospectively over 2 study visits. Disease activity measures, whole-blood type I IFN gene and chemokine score were collected. We also measured serum levels of other pro-inflammatory cytokines, including IL-6.
Results
Changes in juvenile and adult DM global disease activity correlated positively and significantly with changes in the type I IFN gene score before (r=0.33, p=0.023) and IFN chemokine score before and after adjustment for medication use (r=0.53, p<0.001 and r=0.50, p=<0.001). Changes in muscle and extramuscular VAS subscales positively correlated with change in IFN gene and chemokine score (p=0.002). Serum levels of IL-6, IL-8 and TNFα were positively correlated with changes in global, muscle and extra-muscular VAS before and after adjustment for medications (p<0.05).
Conclusion
Our findings suggest that changes in type I IFN gene and chemokine scores as well as levels of IL-6, IL-8 and TNFα may serve as sensitive and responsive longitudinal biomarkers of change in disease activity in juvenile and adult DM, even in the presence of immunosuppressant use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.