The aim of this study was to evaluate the analgesic effect of transcranial direct current stimulation of the motor cortex and techniques of visual illusion, applied isolated or combined, in patients with neuropathic pain following spinal cord injury. In a sham controlled, double-blind, parallel group design, 39 patients were randomized into four groups receiving transcranial direct current stimulation with walking visual illusion or with control illusion and sham stimulation with visual illusion or with control illusion. For transcranial direct current stimulation, the anode was placed over the primary motor cortex. Each patient received ten treatment sessions during two consecutive weeks. Clinical assessment was performed before, after the last day of treatment, after 2 and 4 weeks follow-up and after 12 weeks. Clinical assessment included overall pain intensity perception, Neuropathic Pain Symptom Inventory and Brief Pain Inventory. The combination of transcranial direct current stimulation and visual illusion reduced the intensity of neuropathic pain significantly more than any of the single interventions. Patients receiving transcranial direct current stimulation and visual illusion experienced a significant improvement in all pain subtypes, while patients in the transcranial direct current stimulation group showed improvement in continuous and paroxysmal pain, and those in the visual illusion group improved only in continuous pain and dysaesthesias. At 12 weeks after treatment, the combined treatment group still presented significant improvement on the overall pain intensity perception, whereas no improvements were reported in the other three groups. Our results demonstrate that transcranial direct current stimulation and visual illusion can be effective in the management of neuropathic pain following spinal cord injury, with minimal side effects and with good tolerability.
Conduction along peripheral and central pain pathways is normal in patients with Parkinson disease with or without primary central pain. However, apart from signs of hyperalgesia, our patients exhibited lack of habituation of sympathetic sudomotor responses to repetitive pain stimuli, suggesting an abnormal control of the effects of pain inputs on autonomic centers. Abnormalities were attenuated by l-dopa, suggesting that the dysfunction may occur in dopamine-dependent centers regulating both autonomic function and inhibitory modulation of pain inputs.
Objective:To assess the effect of high-frequency repetitive transcranial magnetic stimulation (rTMS) on lower extremities motor score (LEMS) and gait in patients with motor incomplete spinal cord injury (SCI). Method: The prospective longitudinal randomized, double-blind study assessed 17 SCI patients ASIA D. We assessed LEMS, modified Ashworth Scale (MAS), 10-m walking test (10MWT), Walking Index for SCI (WISCI II) scale, step length, cadence, and Timed Up and Go (TUG) test at baseline, after the last of 15 daily sessions of rTMS and 2 weeks later. Patients were randomized to active rTMS or sham stimulation. Three patients from the initial group of 10 randomized to sham stimulation entered the active rTMS group after a 3-week washout period. Therefore a total of 10 patients completed each study condition. Both groups were homogeneous for age, gender, time since injury, etiology, and ASIA scale. Active rTMS consisted of 15 days of daily sessions of 20 trains of 40 pulses at 20 Hz and an intensity of 90% of resting motor threshold. rTMS was applied with a double cone coil to the leg motor area. Results: There was a significant improvement in LEMS in the active group (28.4 at baseline and 33.2 after stimulation; P = .004) but not in the sham group (29.6 at baseline, and 30.9 after stimulation; P = .6). The active group also showed significant improvements in the MAS, 10MWT, cadence, step length, and TUG, and these improvements were maintained 2 weeks later. Following sham stimulation, significant improvement was found only for step length and TUG. No significant changes were observed in the WISCI II scale in either group. Conclusion: High-frequency rTMS over the leg motor area can improve LEMS, spasticity, and gait in patients with motor incomplete SCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.