SummaryStandardization of mesenchymal stromal cells (MSCs) remains a major obstacle in regenerative medicine. Starting material and culture expansion affect cell preparations and render comparison between studies difficult. In contrast, induced pluripotent stem cells (iPSCs) assimilate toward a ground state and may therefore give rise to more standardized cell preparations. We reprogrammed MSCs into iPSCs, which were subsequently redifferentiated toward MSCs. These iPS-MSCs revealed similar morphology, immunophenotype, in vitro differentiation potential, and gene expression profiles as primary MSCs. However, iPS-MSCs were impaired in suppressing T cell proliferation. DNA methylation (DNAm) profiles of iPSCs maintained donor-specific characteristics, whereas tissue-specific, senescence-associated, and age-related DNAm patterns were erased during reprogramming. iPS-MSCs reacquired senescence-associated DNAm during culture expansion, but they remained rejuvenated with regard to age-related DNAm. Overall, iPS-MSCs are similar to MSCs, but they reveal incomplete reacquisition of immunomodulatory function and MSC-specific DNAm patterns—particularly of DNAm patterns associated with tissue type and aging.
Culture media for therapeutic cell preparations-such as mesenchymal stromal cells (MSCs)-usually comprise serum additives. Traditionally, fetal bovine serum is supplemented in basic research and in most clinical trials. Within the past years, many laboratories adapted their culture conditions to human platelet lysate (hPL), which further stimulates proliferation and expansion of MSCs. Particularly with regard to clinical application, human alternatives for fetal bovine serum are clearly to be preferred. hPL is generated from human platelet units by disruption of the platelet membrane, which is commonly performed by repeated freeze and thaw cycles. Such culture supplements are notoriously ill-defined, and many parameters contribute to batch-to-batch variation in hPL such as different amounts of plasma, a broad range of growth factors and donor-specific effects. The plasma components of hPL necessitate addition of anticoagulants such as heparins to prevent gelatinization of hPL medium, and their concentration must be standardized. Labels for description of hPL-such as "xenogen-free," "animal-free" and "serum free"-are not used consistently in the literature and may be misleading if not critically assessed. Further analysis of the precise composition of relevant growth factors, attachment factors, microRNAs and exosomes will pave the way for optimized and defined culture conditions. The use of hPL has several advantages and disadvantages: they must be taken into account because the choice of cell culture additive has major impact on cell preparations.
Mesenchymal stem cells (MSCs) are multipotent progenitor cells with the capacity to differentiate into different tissue cell types such as chondrocytes, osteocytes, and adipocytes. In addition, they can home to damaged, in-flamed, and malignant tissues and display immunomodulatory properties. Since tissue-derived factors might modulate these properties, we decided to explore the impact of prototypic tissue-derived inflammatory cytokines such as TNF-alpha and IFN-gamma on immunomodulatory MSCs functions. To this end, we used primary bone marrow and cord blood-derived MSCs as well as an immortalized MSC line (V54/2) as model systems. We demonstrate that under unstimulated conditions, V54/2 cells constitutively express low levels of indoleamine 2,3-dioxygenase (IDO), exert an immunosuppressive effect on activated T-lymphocyte proliferation, secrete a distinct set of cytokines, and express a wide range of chemokine receptors. Upon stimulation, the proinflammatory cytokines IFN-gamma and TNF-alpha did not inhibit suppression of T-cell proliferation, although IDO expression was up-regulated by IFN-gamma. In contrast, TNF-alpha but not IFN-gamma amplified the cytokine production of V54/2 and primary MSCs. Interestingly, IFN-gamma was superior to TNF-alpha in up-regulating expression of chemokine receptors and migration of the V54/2 cell line, while TNF-alpha was the predominant regulator of migration in primary MSCs. Altogether, our data show that properties of MSCs depend on local environmental factors. In particular, we have shown that IFN-gamma and TNF-alpha differentially regulate cytokine expression and migration of MSCs.
The regenerative potential declines upon aging. This might be due to cell-intrinsic changes in stem and progenitor cells or to influences by the microenvironment. Mesenchymal stem cells (MSC) raise high hopes in regenerative medicine. They are usually culture expanded in media with fetal calf serum (FCS) or other serum supplements such as human platelet lysate (HPL). In this study, we have analyzed the impact of HPL-donor age on culture expansion. 31 single donor derived HPLs (25 to 57 years old) were simultaneously compared for culture of MSC. Proliferation of MSC did not reveal a clear association with platelet counts of HPL donors or growth factors concentrations (PDGF-AB, TGF-β1, bFGF, or IGF-1), but it was significantly higher with HPLs from younger donors (<35 years) as compared to older donors (>45 years). Furthermore, HPLs from older donors increased activity of senescence-associated beta-galactosidase (SA-βgal). HPL-donor age did not affect the fibroblastoid colony-forming unit (CFU-f) frequency, immunophenotype or induction of adipogenic differentiation, whereas osteogenic differentiation was significantly lower with HPLs from older donors. Concentrations of various growth factors (PDGF-AB, TGF-β1, bFGF, IGF-1) or hormones (estradiol, parathormone, leptin, 1,25 vitamin D3) were not associated with HPL-donor age or MSC growth. Taken together, our data support the notion that aging is associated with systemic feedback mechanisms acting on stem and progenitor cells, and this is also relevant for serum supplements in cell culture: HPLs derived from younger donors facilitate enhanced expansion and more pronounced osteogenic differentiation.
Human MSCs may respond to TLR ligation, and recent research has suggested that many tissues contain tissue-specific MSCs, possibly located in periendothelial and perivascular regions. At present, the functional consequences of these findings are unclear. We hypothesized that tissue-specific MSCs could play an instructional role during early phases of bacterial challenge. To investigate this hypothesis further, we set up a coculture system of glandular MSCs and peripheral blood neutrophils so that we could analyze the cellular interactions of these cells in response to LPS challenge. We found that stimulation with bacterial endotoxin induced chemokine receptor expression and mobility of MSCs. Activated MSCs secreted large amounts of inflammatory cytokines and recruited neutrophils in an IL-8- and MIF-dependent manner. Recruited and activated neutrophils showed a prolonged lifespan, an increased expression of inflammatory chemokines, and an enhanced responsiveness toward subsequent challenge with LPS. Our findings demonstrate a complex, functional interaction between tissue-resident MSCs and peripheral blood neutrophils upon bacterial challenge and suggest a role for MSCs in the early phases of pathogen challenge, when classical immune cells have not been recruited yet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.