A hyperbranched polymer, a precursor of silicon carbide (SiC), was successfully synthesized using a hydrosilylation reaction with Karstedt's catalyst. This reaction was optimized with the use of a rheometer coupled with an infrared spectrometer. The polymeric precursor was characterized using NMR and Fourier transform infrared spectroscopies, and dynamic rheology. The polymerization reaction was followed in situ by combined rheological and infrared measurements, indicating a gel‐like behaviour for alkene conversions higher than 0.55. Overall second‐order kinetics was determined for the hydrosilylation reaction. Pyrolysis at 1400 °C led to porous materials with β‐SiC and free carbon.
Funding informationFonds de Recherche du Québec -Nature et Technologies Porous silicon carbide (SiC) materials were fabricated using the polymer-derived ceramics method with kraft pulp papers (KPP) and a commercial polycarbosilane, the allylhydridopolycarbosilane (AHPCS), as starting materials. For this, KPP, propargylated KPP, or phosphorylated KPP were used to be impregnated by the AHPCS, with or without Karstedt catalyst. The pyrolysed materials were characterized at different stages, by using thermogravimetric analysis (TGA) coupled with mass spectrometry, X-ray diffraction (XRD), and scanning electron microscopy (SEM).Depending on the nature of the initial template, various architectured SiC ceramics were successfully obtained with adjustable porosities. The key role of the previous functionalization of the papers was highlighted in terms of interactions at the interface between the polymer and the lignocellulosic handsheets. It led to either replica or sacrificial template methods. Thus, it was possible to tune the open porosity of the porous carbon and β-SiC materials between 14.8% and 92.9%, with ceramic yields varying from 12% to 71%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.