We investigated 12 years DNS query logs of our campus network and identified phenomena of malicious botnet domain generation algorithm (DGA) traffic. DGA-based botnets are difficult to detect using cyber threat intelligence (CTI) systems based on blocklists. Artificial intelligence (AI)/machine learning (ML)-based CTI systems are required. This study (1) proposed a model to detect DGA-based traffic based on statistical features with datasets comprising 55 DGA families, (2) discussed how CTI can be expanded with computable CTI paradigm, and (3) described how to improve the explainability of the model outputs by blending explainable AI (XAI) and open-source intelligence (OSINT) for trust problems, an antidote for skepticism to the shared models and preventing automation bias. We define the XAI-OSINT blending as aggregations of OSINT for AI/ML model outcome validation. Experimental results show the effectiveness of our models (96.3% accuracy). Our random forest model provides better robustness against three stateof-the-art DGA adversarial attacks (CharBot, DeepDGA, MaskDGA) compared with character-based deep learning models (Endgame, CMU, NYU, MIT). We demonstrate the sharing mechanism and confirm that the XAI-OSINT blending improves trust for CTI sharing as evidence to validate our proposed computable CTI paradigm to assist security analysts in security operations centers using an automated, explainable OSINT approach (for second opinion). Therefore, the computable CTI reduces manual intervention in critical cybersecurity decision-making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.