In vitro assays revealed that COX-2 inhibitors with CA II inhibitory potency suppressed both differentiation and activity of osteoclasts, whereas that without the potency reduced only osteoclast differentiation. However, all COX-2 inhibitors similarly suppressed bone destruction in adjuvant-induced arthritic rats, indicating that suppression of osteoclast differentiation is more effective than that of osteoclast activity for the treatment.Introduction: Cyclooxygenase (COX)-2 and carbonic anhydrase II (CA II) are known to play important roles in the differentiation of osteoclasts and the activity of mature osteoclasts, respectively. Because several COX-2 selective agents were recently found to possess an inhibitory potency against CA II, this study compared the bone sparing effects of COX-2 selective agents with and without the CA II inhibitory potency. Materials and Methods: Osteoclast differentiation was determined by the mouse co-culture system of osteoblasts and bone marrow cells, and mature osteoclast activity was measured by the pit area on a dentine slice resorbed by osteoclasts generated and isolated from bone marrow cells. In vivo effects on arthritic bone destruction were determined by radiological and histological analyses of hind-paws of adjuvant-induced arthritic (AIA) rats. Results: CA II was expressed predominantly in mature osteoclasts, but not in the precursors. CA II activity was inhibited by sulfonamide-type COX-2 selective agents celecoxib and JTE-522 similarly to a CA II inhibitor acetazolamide, but not by a methylsulfone-type COX-2 inhibitor rofecoxib. In vitro assays clearly revealed that celecoxib and JTE-522 suppressed both differentiation and activity of osteoclasts, whereas rofecoxib and acetazolamide suppressed only osteoclast differentiation and activation, respectively. However, bone destruction in AIA rats was potently and similarly suppressed by all COX-2 selective agents whether with or without CA II inhibitory potency, although only moderately by acetazolamide. Conclusions: Suppression of osteoclast differentiation by COX-2 inhibition is more effective than suppression of mature osteoclast activity by CA II inhibition for the treatment of arthritic bone destruction.
These results indicate that JTE-522 selectively inhibits PG production mediated by COX-2 in inflammatory tissues. JTE-522 may thus represent a novel type of anti-inflammatory drug without adverse effects on the gastro-intestinal tract.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.