It has frequently been demonstrated that prior high-intensity exercise facilitates pulmonary oxygen uptake [Formula: see text] response at the onset of subsequent identical exercise. To clarify the roles of central O(2) delivery and/or peripheral O(2) extraction in determining this phenomenon, we investigated the relative contributions of cardiac output (CO) and arteriovenous O(2) content difference [Formula: see text] to the [Formula: see text] transient during repeated bouts of high-intensity knee extension (KE) exercise. Nine healthy subjects volunteered to participate in this study. The protocol consisted of two consecutive 6-min KE exercise bouts in a supine position (work rate 70-75% of peak power) separated by 6 min of rest. Throughout the protocol, continuous-wave Doppler ultrasound was used to measure beat-by-beat CO (i.e., via simultaneous measurement of stroke volume and the diameter of the arterial aorta). The phase II [Formula: see text] response was significantly faster and the slow component (phase III) was significantly attenuated during the second KE bout compared to the first. This was a result of increased CO during the first 30 s of exercise: CO contributing to 100 and 56% of the [Formula: see text] speeding at 10 and 30 s, respectively. After this, the contribution of [Formula: see text] became increasingly more predominant: being responsible to an estimated 64% of the [Formula: see text] speeding at 90 s, which rose to 100% by 180 s. This suggests that, while both CO and [Formula: see text] clearly interact to determine the [Formula: see text] response, the speeding of [Formula: see text] kinetics by prior high-intensity KE exercise is predominantly attributable to increases in [Formula: see text].
There are many studies with respect to the age-related change of the characteristics of beat-to-beat heart rate variability (HRV), reflected by cardiac autonomic control, especially focusing on adulthood (i.e., aging related to the incidence of metabolic syndrome) in Japanese individuals. However, it is not still clear how basic control matures during childhood. This study was, therefore, designed to explore the HRV characteristics of pre- and post-adolescent Japanese, in a cross-sectional manner. Resting HRV data was recorded in a relaxing supine position from 136 healthy individuals between 8 and 20 years (48 boys between 8 and 14 years; 88 girls between 8 and 20 years) who were instructed to breathe periodically (0.25 Hz). Frequency-domain analysis (i.e., the spectral analysis based on an autoregressive model) of short-term, stationary R-R intervals was performed to evaluate the low- (LF; below 0.15 Hz) and high- (HF; 0.15-0.40 Hz) frequency powers. The HF to total power represents the vagal control of heart rate (PNS indicator), and the ratio of LF to HF (LF/HF) is considered to relate to the sympathetic modulations (SNS indicator). Both PNS and SNS indices had substantially no effect from age and/or gender in the range between 8 and 20 years. In conclusion, the control of the cardiac autonomic nervous system in Japanese seems already to be compatible with that in adulthood before approximately 10 years. In other word, the cardiac autonomic modulation would presumably be maturated before the age of approximately 7-8 years, though further research is awaited.
Peak VO2 showed a tendency to increase with training; the increases became significant at T30. The time constants (tau 2) during "phase II" of the VO2 on-kinetics were 62.4 +/- 13.0 (s) (T0), 51.2 +/- 8.7 (T7), 46.1 +/- 7.4 (T15), 45.0 +/- 7.2 (T30), and 43.4 +/- 6.4 (T60); a significant difference compared to T0 was observed from T7 onward. The same pattern of change as a function of training was described for the VO2 off-kinetics. It is concluded that in SCI participants, the acceleration of VO2 kinetics at the onset of exercise was observed over a short term.
BackgroundTo investigate more practical handling of Borg’s ratings of perceived exertion (RPE) and category-ratio scale of RPE (CR-10), we evaluated interrelationships between RPE, CR-10, and blood lactate concentrations (bLa) during incremental treadmill running tests for young females with different aerobic fitness levels.MethodsOxygen consumption, heart rate, bLa, RPE, and CR-10 were measured from distance runners (DR; n = 15), race walkers (RW; n = 6), and untrained females (UT; n = 11). These variables corresponding to the lactate threshold (LT) and onset of blood lactate accumulation (OBLA) were compared among these groups.ResultsThe UT had significantly lower RPE at LT than DR and RW, although the CR-10 at LT was not significantly different among these groups. The CR-10 at OBLA was significantly lower for the UT than DR. The relationship between bLa and CR-10 was approximated well by two linear regression lines in all groups. The bLa at the intersection only for the RW was significantly lower than that at LT, however, such intersections were observed at CR-10 = 3.1 to 3.2 without significant group differences. The CR-10 scores at LT and intersections were not significantly different in each group.ConclusionThese results suggested that an intersection between CR-10 and bLa was observed at the CR-10 score around three points of first half regardless of the aerobic fitness levels in young females, and such CR-10 scores would be associated with LT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.