We initiate the study of indivisible chore allocation for agents with asymmetric shares. The fairness concept we focus on is the weighted natural generalization of maxmin share: WMMS fairness and OWMMS fairness. We first highlight the fact that commonly-used algorithms that work well for the allocation of goods to asymmetric agents, and even for chores to symmetric agents do not provide good approximations for allocation of chores to asymmetric agents under WMMS. As a consequence, we present a novel polynomial-time constant-approximation algorithm, via linear program, for OWMMS. For two special cases: the binary valuation case and the 2-agent case, we provide exact or better constant-approximation algorithms.
The function and performance of networks rely on their robustness, defined as their ability to continue functioning in the face of damage (targeted attacks or random failures) to parts of the network. Prior research has proposed a variety of measures to quantify robustness and various manipulation strategies to alter it. In this paper, our contributions are twofold. First, we critically analyze various robustness measures and identify their strengths and weaknesses. Our analysis suggests natural connectivity, based on the weighted count of loops in a network, to be a reliable measure. Second, we propose the first principled manipulation algorithms that directly optimize this robustness measure, which lead to significant performance improvement over existing, ad-hoc heuristic solutions. Extensive experiments on real-world datasets demonstrate the effectiveness and scalability of our methods against a long list of competitor strategies.
Abstract:We propose interdependent defense (IDD) games, a computational game-theoretic framework to study aspects of the interdependence of risk and security in multi-agent systems under deliberate external attacks. Our model builds upon interdependent security (IDS) games, a model by Heal and Kunreuther that considers the source of the risk to be the result of a fixed randomized-strategy. We adapt IDS games to model the attacker's deliberate behavior. We define the attacker's pure-strategy space and utility function and derive appropriate cost functions for the defenders. We provide a complete characterization of mixed-strategy Nash equilibria (MSNE), and design a simple polynomial-time algorithm for computing all of them for an important subclass of IDD games. We also show that an efficient algorithm to determine whether some attacker's strategy can be a part of an MSNE in an instance of IDD games is unlikely to exist. Yet, we provide a dynamic programming (DP) algorithm to compute an approximate MSNE when the graph/network structure of the game is a directed tree with a single source. We also show that the DP algorithm is a fully polynomial-time approximation scheme. In addition, we propose a generator of random instances of IDD games based on the real-world Internet-derived graph at the level of autonomous systems (≈27 K nodes and ≈100 K edges as measured in March 2010 by the DIMES project). We call such games Internet games. We introduce and empirically evaluate two heuristics from the literature on learning-in-games, best-response gradient dynamics (BRGD) and smooth best-response dynamics (SBRD), to compute an approximate MSNE in IDD games with arbitrary graph structures, such as randomly-generated instances of Internet games. In general, preliminary experiments applying our proposed heuristics are promising. Our experiments show that, while BRGD is a useful technique for the case of Internet games up to certain approximation level, SBRD is more efficient and provides better approximations than BRGD. Finally, we discuss several extensions, future work, and open problems.
We consider the facility location problem in the one-dimensional setting where each facility can serve a limited number of agents from the algorithmic and mechanism design perspectives. From the algorithmic perspective, we prove that the corresponding optimization problem, where the goal is to locate facilities to minimize either the total cost to all agents or the maximum cost of any agent is NP-hard. However, we show that the problem is fixed-parameter tractable, and the optimal solution can be computed in polynomial time whenever the number of facilities is bounded, or when all facilities have identical capacities. We then consider the problem from a mechanism design perspective where the agents are strategic and need not reveal their true locations. We show that several natural mechanisms studied in the uncapacitated setting either lose strategyproofness or a bound on the solution quality %on the returned solution for the total or maximum cost objective. We then propose new mechanisms that are strategyproof and achieve approximation guarantees that almost match the lower bounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.