Murine double minute-2 (MDM2) is an intracellular molecule with multiple biologic functions. It serves as a negative regulator of p53 and thereby limits cell cycle arrest and apoptosis. Because MDM2 blockade suppresses tumor cell growth in vitro and in vivo, respective MDM2 inhibition is currently evaluated as anti-cancer therapy in clinical trials. However, the anti-proliferative effects of MDM2 inhibition also impair regenerative cell growth upon tissue injury. This was so far documented for tubular repair upon postischemic acute kidney injury and might apply to wound healing responses in general. Furthermore, MDM2 has numerous p53-independent effects. As a new entry, MDM2 was identified to act as a co-transcription factor for nuclear factor-kappa-light-enhancer of activated B cells (NF-κB) at cytokine promoters. This explains the potent anti-inflammatory effects of MDM2 inhibitors in vitro and in vivo. For example, the NF-κB-antagonistic and p53-agonistic activities of MDM2 inhibitors elicit potent therapeutic effects on experimental lymphoproliferative autoimmune disorders such as systemic lupus erythematosus. In this review, we discuss the classic p53-dependent, the recently discovered p53-independent, and the NF-κB-agonistic biologic functions of MDM2. We describe its complex regulatory role on p53 and NF-κB signaling and name areas of research that may help to foresee previously unexpected effects or potential alternative indications of therapeutic MDM2 blockade.
Podocyte apoptosis as a pathway of podocyte loss is often suspected but rarely detected. To study podocyte apoptosis versus inflammatory forms of podocyte death in vivo, we targeted murine double minute (MDM)-2 for three reasons. First, MDM2 inhibits p53-dependent apoptosis; second, MDM2 facilitates NF-κB signalling; and third, podocytes show strong MDM2 expression. We hypothesized that blocking MDM2 during glomerular injury may trigger p53-mediated podocyte apoptosis, proteinuria, and glomerulosclerosis. Unexpectedly, MDM2 blockade in early adriamycin nephropathy of Balb/c mice had the opposite effect and reduced intra-renal cytokine and chemokine expression, glomerular macrophage and T-cell counts, and plasma creatinine and blood urea nitrogen levels. In cultured podocytes exposed to adriamycin, MDM2 blockade did not trigger podocyte death but induced G2/M arrest to prevent aberrant nuclear divisions and detachment of dying aneuploid podocytes, a feature of mitotic catastrophe in vitro and in vivo. Consistent with these observations, 12 of 164 consecutive human renal biopsies revealed features of podocyte mitotic catastrophe but only in glomerular disorders with proteinuria. Furthermore, delayed MDM2 blockade reduced plasma creatinine levels, blood urea nitrogen, tubular atrophy, interstitial leukocyte numbers, and cytokine expression as well as interstitial fibrosis. Together, MDM2-mediated mitotic catastrophe is a previously unrecognized variant of podocyte loss where MDM2 forces podocytes to complete the cell cycle, which in the absence of cytokinesis leads to podocyte aneuploidy, mitotic catastrophe, and loss by detachment. MDM2 blockade with nutlin-3a could be a novel therapeutic strategy to prevent renal inflammation, podocyte loss, glomerulosclerosis, proteinuria, and progressive kidney disease.
Murine double minute-2 (MDM2), an E3 ligase that regulates the cell cycle and inflammation, is highly expressed in podocytes. In podocyte injury, MDM2 drives podocyte loss by mitotic catastrophe, but the function of MDM2 in resting podocytes has not been explored. Here, we investigated the effects of podocyte MDM2 deletion in vitro and in vivo. In vitro, MDM2 knockdown by siRNA caused increased expression of p53 and podocyte death, which was completely rescued by coknockdown of p53. Apoptosis, pyroptosis, pyronecrosis, necroptosis, ferroptosis, and parthanatos were excluded as modes of occurrence for this p53-overactivationrelated cell death (here referred to as podoptosis). Podoptosis was associated with cytoplasmic vacuolization, endoplasmic reticulum stress, and dysregulated autophagy (previously described as paraptosis). MDM2 knockdown caused podocyte loss and proteinuria in a zebrafish model, which was consistent with the phenotype of podocyte-specific MDM2-knockout mice that also showed the aforementioned ultrastructual podocyte abnormalities before and during progressive glomerulosclerosis. The phenotype of both animal models was entirely rescued by codeletion of p53. We conclude that MDM2 maintains homeostasis and long-term survival in podocytes by preventing podoptosis, a p53-regulated form of cell death with unspecific features previously classified as paraptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.