Due to rapid developments in machine learning, and in particular neural networks, a number of new methods for time-to-event predictions have been developed in the last few years. As neural networks are parametric models, it is more straightforward to integrate parametric survival models in the neural network framework than the popular semi-parametric Cox model. In particular, discrete-time survival models, which are fully parametric, are interesting candidates to extend with neural networks. The likelihood for discrete-time survival data may be parameterized by the probability mass function (PMF) or by the discrete hazard rate, and both of these formulations have been used to develop neural network-based methods for time-to-event predictions. In this paper, we review and compare these approaches. More importantly, we show how the discrete-time methods may be adopted as approximations for continuous-time data. To this end, we introduce two discretization schemes, corresponding to equidistant times or equidistant marginal survival probabilities, and two ways of interpolating the discrete-time predictions, corresponding to piecewise constant density functions or piecewise constant hazard rates. Through simulations and study of real-world data, the methods based on the hazard rate parametrization are found to perform slightly better than the methods that use the PMF parametrization. Inspired by these investigations, we also propose a continuous-time method by assuming that the continuous-time hazard rate is piecewise constant. The method, named PC-Hazard, is found to be highly competitive with the aforementioned methods in addition to other methods for survival prediction found in the literature.
We predict mortgage default by applying convolutional neural networks to consumer transaction data. For each consumer we have the balances of the checking account, savings account, and the credit card, in addition to the daily number of transactions on the checking account, and amount transferred into the checking account. With no other information about each consumer we are able to achieve a ROC AUC of 0.918 for the networks, and 0.926 for the networks in combination with a random forests classifier.
Application of discrete-time survival methods for continuous-time survival prediction is considered. For this purpose, a scheme for discretization of continuous-time data is proposed by considering the quantiles of the estimated event-time distribution, and, for smaller data sets, it is found to be preferable over the commonly used equidistant scheme. Furthermore, two interpolation schemes for continuous-time survival estimates are explored, both of which are shown to yield improved performance compared to the discrete-time estimates. The survival methods considered are based on the likelihood for right-censored survival data, and parameterize either the probability mass function (PMF) or the discrete-time hazard rate, both with neural networks. Through simulations and study of real-world data, the hazard rate parametrization is found to perform slightly better than the parametrization of the PMF. Inspired by these investigations, a continuous-time method is proposed by assuming that the continuous-time hazard rate is piecewise constant. The method, named PC-Hazard, is found to be highly competitive with the aforementioned methods in addition to other methods for survival prediction found in the literature.
The Brier score is commonly used for evaluating probability predictions. In survival analysis, with right-censored observations of the event times, this score can be weighted by the inverse probability of censoring (IPCW) to retain its original interpretation. It is common practice to estimate the censoring distribution with the Kaplan-Meier estimator, even though it assumes that the censoring distribution is independent of the covariates. This paper discusses the general impact of the censoring estimates on the Brier score and shows that the estimation of the censoring distribution can be problematic. In particular, when the censoring times can be identified from the covariates, the IPCW score is no longer valid. For administratively censored data, where the potential censoring times are known for all individuals, we propose an alternative version of the Brier score. This administrative Brier score does not require estimation of the censoring distribution and is valid even if the censoring times can be identified from the covariates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.