The genus Nepenthes represents carnivorous plants with pitcher traps capable of efficient prey capture and digestion. The possible involvement of plant chitinases in this process was studied in Nepenthes khasiana. Two different types of endochitinases were identified in the liquid of closed traps exhibiting substrate specificity for either long chitin polymers or N-acetylglucosamine (GlcNAc) oligomers. Injection of chitin into such closed sterile pitchers induced the appearance of additional endochitinase isoenzymes, with substrate specificity only for long chitin polymers. No significant exochitinase (N-acetyl-beta-glucosaminidase) or chitobiosidase activity could be detected in the non-induced or induced trap liquid. Four genes representing two subgroups of basic chitinases, denoted as Nkchit1b and Nkchit2b, were isolated from the secretory region of N. khasiana pitchers. The main differences between the two subgroups are the presence of a proline-rich hinge region only in NkCHIT1b and a C-terminal putative vacuole targeting extension only in NkCHIT2b, indicating different compartmentalization of the two enzymes. Reverse transcription-polymerase chain reaction (RT-PCR) evaluation of mRNA levels showed that the Nkchit2b genes are constitutively expressed in the secretory cells while transcription of Nkchit1b genes is induced by chitin injection. These results show for the first time the involvement of genes encoding chitinases in prey-trap interaction and their differential expression and activity during prey trapping.
Nepenthes spp. are carnivorous plants that have developed insect capturing traps, evolved by specific modification of the leaf tips, and are able to utilize insect degradation products as nutritional precursors. A chitin-induced antifungal ability, based on the production and secretion to the trap liquid of droserone and 5-O-methyldroserone, is described here. Such specific secretion uniquely occurred when chitin injection was used as the eliciting agent and probably reflects a certain kind of defence mechanism that has been evolved for protecting the carnivory-based provision of nutritional precursors. The pitcher liquid containing droserone and 5-O-methyldroserone at 3:1 or 4:1 molar ratio, as well as the purified naphthoquinones, exerted an antifungal effect on a wide range of plant and human fungal pathogens. When tested against Candida and Aspergillus spp., the concentrations required for achieving inhibitory and fungicidal effects were significantly lower than those causing cytotoxicity in cells of the human embryonic kidney cell line, 293T. These naturally secreted 1,4-naphthoquinone derivatives, that are assumed to act via semiquinone enhancement of free radical production, may offer a new lead to develop alternative antifungal drugs with reduced selectable pressure for potentially evolved resistance.
BackgroundHydrogen photo-production in green algae, catalyzed by the enzyme [FeFe]-hydrogenase (HydA), is considered a promising source of renewable clean energy. Yet, a significant increase in hydrogen production efficiency is necessary for industrial scale-up. We have previously shown that a major challenge to be resolved is the inferior competitiveness of HydA with NADPH production, catalyzed by ferredoxin-NADP+-reductase (FNR). In this work, we explored the in vivo hydrogen production efficiency of Fd-HydA, where the electron donor ferredoxin (Fd) is fused to HydA and expressed in the model organism Chlamydomonas reinhardtii.ResultsWe show that once the Fd-HydA fusion gene is expressed in micro-algal cells of C. reinhardtii, the fusion enzyme is able to intercept photosynthetic electrons and use them for efficient hydrogen production, thus supporting the previous observations made in vitro. We found that Fd-HydA has a ~4.5-fold greater photosynthetic hydrogen production rate standardized for hydrogenase amount (PHPRH) than that of the native HydA in vivo. Furthermore, we provide evidence suggesting that the fusion protein is more resistant to oxygen than the native HydA.ConclusionsThe in vivo photosynthetic activity of the Fd-HydA enzyme surpasses that of the native HydA and shows higher oxygen tolerance. Therefore, our results provide a solid platform for further engineering efforts towards efficient hydrogen production in microalgae through the expression of synthetic enzymes.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-016-0601-3) contains supplementary material, which is available to authorized users.
Various species of microalgae have recently emerged as promising host-organisms for use in biotechnology industries due to their unique properties. These include efficient conversion of sunlight into organic compounds, the ability to grow in extreme conditions and the occurrence of numerous post-translational modification pathways. However, the inability to obtain high levels of nuclear heterologous gene expression in microalgae hinders the development of the entire field. To overcome this limitation, we analyzed different sequence optimization algorithms while studying the effect of transcript sequence features on heterologous expression in the model microalga Chlamydomonas reinhardtii, whose genome consists of rare features such as a high GC content. Based on the analysis of genomic data, we created eight unique sequences coding for a synthetic ferredoxin-hydrogenase enzyme, used here as a reporter gene. Following in silico design, these synthetic genes were transformed into the C. reinhardtii nucleus, after which gene expression levels were measured. The empirical data, measured in vivo show a discrepancy of up to 65-fold between the different constructs. In this work we demonstrate how the combination of computational methods and our empirical results enable us to learn about the way gene expression is encoded in the C. reinhardtii transcripts. We describe the deleterious effect on overall expression of codons encoding for splicing signals. Subsequently, our analysis shows that utilization of a frequent subset of preferred codons results in elevated transcript levels, and that mRNA folding energy in the vicinity of translation initiation significantly affects gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.