The versatility of nanomedicines allows for various modifications of material type, size, charge and functionalization, offering a promising platform for biomedical applications including tumor targeting. One such material, silk fibroin (SF) has emerged, displaying an excellent combination of mechanical and biological properties characterized by its high tensile and breaking strength, elongation, stiffness and ductility. High stability allows SF to maintain its chemical structure even at high temperatures (around 250°C) and compared with other biological polymers like polylactide (PLA), poly(lactic-co-glycolic acid) (PLGA), and collagen, SF shows excellent biocompatibility and lower immunogenic response making it a very suitable material for drug delivery and tissue engineering. Here we describe the structure, synthesis and properties of SF nanoparticles. We evaluate its emergence as a multi-functional polymer for its utility as a nanocarrier to deliver cancer therapies directly to tumors together with considerations for its clinical use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.