The influence of external clay additive and inherent minerals on the ignition of a Xinjiang lignite and its volatile flame propagation in air versus oxy-fuel combustion have been clarified in this work, through the use of a flat-flame burner reactor (FFBR) coupled with in-situ optical diagnosis tools. As has been confirmed, ignition of the lignite studied in this paper was initiated by homogeneous oxidation of a tarry volatile cloud. The removal of HCl-soluble metals shifted coal devolatilization toward higher temperatures in air and 21% O 2 in CO 2 . The mixing of external clay with coal had little effect on the ignition time. However, it enhanced the decomposition of volatiles, leading to a larger volatile cloud shielding on the particle surface. The oxygen fraction in the bulk gas was found to be most influential. Increasing the oxygen fraction to 30% eliminated all of the discrepencies between raw lignite, acid-washed lignite, and a mixture of raw lignite and clay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.