BackgroundThe aim was to compare the repeatability, reproducibility and inherent precision of ultrasound pachymetry (USP), noncontact specular microscopy (SP-2000P) and the Confoscan 4 confocal microscope (z-ring CS4) in measuring endothelial cell density (ECD), coefficient of variation of cell size (CV), and central corneal thickness (CCT) in normal eyes.MethodsIn this prospective study, one eye was selected from each of 30 subjects for the measurements of ECD, CV and CCT, which were taken by two observers. Results were analyzed statistically by repeated-measures analysis of variance (ANOVA) for intra-observer repeatability, inter-observer reproducibility, unpaired t-test, paired t-test, and Bland–Altman analyses to determine limits of agreement (LOA) between the three instruments.ResultsMean ECD, measured by SP-2000P and z-ring CS4, were 3115.50 ± 279.70 cells/mm2 and 3167.50 ± 264.75 cells/mm2, respectively (observer 1), and 3192.63 ± 249.42 cells/mm2 (z-ring, observer 2). Mean CV measurements were 27.12 ± 2.51 and 27.10 ± 2.41 (SP-2000P and z-ring CS4, respectively; observer 1), and 27.17 ± 2.25 (z-ring, observer 2). Mean CCT values were 555.11 ± 35.83 μm (USP), 535.82 ± 41.10 μm (SP-2000P) and 552.57 ± 36.83 μm (z-ring CS4), and 554.97 ± 36.34 μm (z-ring CS4, observer 2). However, pairwise tests in all cases there was good repeatability and reproducibility as shown by inter-observer and intra-observer analysis of variance for each of the instruments.ConclusionsThe SP-2000P and the z-ring CS4 can be used interchangeably to measure ECD and CV. For CCT, the sample size was too small to test for differences of the CCT measurements between the three instruments.
BackgroundThe aim was to compare the anterior chamber depth (ACD) measurements taken with Orbscan II, ultrasound biomicroscopy (UBM) and the Artemis-2 VHF (very-high-frequency) ultrasound scanner in normal subjects.MethodsIn this prospective study, one eye from each of 60 normal subjects was randomly selected. Three subjects dropped out of the study because they were apprehensive about the UBM examination; their data were excluded entirely. Measurements of ACD were taken with the Orbscan II, UBM and Artemis-2 VHFUS. Results were obtained for coefficient of variance (CV) and intra-class correlation coefficient (ICC), and statistical analysis was by repeated-measures analysis of variance (ANOVA) for intra-observer repeatability. ANOVA and Bland–Altman analyses were used to determine limits of agreement (LOA) between the three instruments.ResultsThe average ACD (± standard deviation) was 3.13 ± 0.34 mm, 2.96 ± 0.27 mm and 2.87 ± 0.31 mm for the Orbscan II, UBM and Artemis-2 VHFUS, respectively. The repeatability scores were 0.015 ± 0.014%, 0.08 ± 0.09% and 0.07 ± 0.06% for the Orbscan II, UBM and Artemis-2 VHFUS, respectively. The ICC for repeatability of Orbscan II, UBM and Artemis-2 VHFUS measurements was high and equal to 0.99%. The intra-observer repeatability scores of the ACD measurement p-values using Orbscan II, UBM and Artemis-2 VHFUS were 0.12, 0.70 and 0.10, respectively. The mean difference and standard deviations for ACD measurements using Orbscan II vs UBM, Orbscan II vs Artemis-2 VHFUS and UBM vs Artemis-2 VHFUS were 0.17 ± 0.31 mm, 0.27 ± 0.34 mm and 0.10 ± 0.18 mm, respectively. LOAs were 0.78 to -0.44 mm, 0.93 to -0.39 mm and 0.45 to -0.26 mm. ANOVA revealed a statistically significant difference between the Orbscan II, UBM and Artemis-2 VHFUS (p < 0.0001).ConclusionsMeasurements by the three instruments show high repeatability. UBM and the Artemis-2 VHFUS can be used interchangeably, but the Orbscan II cannot be used interchangeably with UBM or the Artemis-2 VHFUS.
Objectives: To compare the precision of intraocular pressure (IOP) measurements acquired using an ocular response analyser (ORA), Auto Kerato-Refracto-Tonometer (TRK-1P), and Goldmann applanation tonometer (GAT) in healthy eyes. Methods:In this prospective study, one eye of each of 57 normal subjects was randomly selected for analysis. Measurements of the IOP were performed using ORA, TRK-1P, and GAT, and measurements of corneal hysteresis (CH), corneal resistance factor (CRF), and central corneal thickness (CCT) were performed using ORA. Repeatability was assessed by the coefficient of variation (CV) and interclass correlation coefficients (ICCs). Agreement among tonometers was assessed by Bland-Altman plots and one-way ANOVA. Results:The average IOPs measured using Goldmann-correlated IOP (IOPg), corneal-compensated IOP (IOPcc), TRK-1P, and GAT (± SDs) were 15.13 ± 2.76, 14.39 ± 2.59, 16.54 ± 2.93, and 15.21 ± 2.54 mmHg, respectively. Intra-observer agreement across all tonometers was strong and slightly higher for GAT and IOPg than for TRK-1P. The intra-observer CVs for GAT IOPg, and TRK-1P, were 4.22 (ICC=0.94), 4.99 (ICC=0.93), and 6.69 (ICC=0.86), respectively. Inter-observer agreement between various measurement methods was evaluated with Bland-Altman plots with multiple measurements per subject and ICCs. Results indicated fairly poor agreement across measurement methods, as supported by large limits of agreement and ICCs. Conclusion:GAT, ORA, and TRK-1P are highly reliable methods for measurement of the IOP; however, the instruments cannot be used interchangeably.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.