In the present study, we utilized Stevia rebaudiana L. (SRLe) extract to in situ biosynthesize nanoscale alpha hematite (α-Fe 2 O 3 ) nanoparticles (NPs) with potent antioxidant, antimicrobial, and anticancer properties. SRLe-α-Fe 2 O 3 was characterized using physiochemical analyses, including UV/Vis, FTIR, XRD, DLS, EDX, SEM, and TEM studies. Among tested solvents, CHCl 3 /MeOH (2:1 v / v ) SRL extract (least polar solvent) contained the highest EY, TPC, and antioxidant capacity of ~3.5%, ~75 mg GAE/g extract, and IC 50 = 9.87 ± 0.7 mg/mL, respectively. FTIR confirmed the engagement of coating operation to the colloidal α-Fe 2 O 3 NPs. TEM, SEM, and DLS revealed that SRLe-α-Fe 2 O 3 has a spherical shape, uniform size distribution with aggregation for an average size of ~18.34 nm, and ζ = −19.4 mV, forming a repulsive barrier that helped to improve stability. The synthesized nanoparticles displayed considerable antibacterial activity against E. coli and S. aureus bacterial growth, and exhibited superior activity against the A549 lung cancer cell lines. These findings indicate that the increased availability of bioactive substances with antioxidant properties of SRLe makes it a potentially interesting material for the preparation of biologically active compounds and green synthesis of nanoparticles.
Breast cancer is the leading cause of cancer-related death among women in Saudi Arabia. Many studies have suggested a strong correlation between vitamin D and multiple types of cancer. This study included 100 female Saudi patients with early or locally advanced breast cancer. Patients were recruited from King Faisal Hospital in Taif City, Saudi Arabia, from January 2020 to September 2020. We aimed to study the association between serum vitamin D, calcium, interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α) and chemerin and breast cancer progression. The control group consisted of 100 healthy individuals. Serum levels of vitamin D, calcium, IL-6, TNF-α and chemerin were measured in all participants. Vitamin D was significantly decreased in patients with high-grade tumours ( p < 0.0001), obesity ( p = 0.013), negative oestrogen receptors ( p < 0.0001), negative progesterone receptors ( p < 0.0001) and positive HER2 receptors ( p < 0.0001). Vitamin D was also decreased in patients with large tumours ( p < 0.0001), axillary lymph node involvement ( p < 0.0001) and advanced-stage cancers ( p < 0.0001). Moreover, higher levels of IL-6, TNF-α and chemerin were significantly associated with the presence of breast cancer, particularly in its advanced stages. Vitamin D deficiency and elevated levels of IL-6, TNF- α and chemerin were associated with adverse clinicopathological features of breast cancer. Vitamin D deficiency and elevated inflammatory cytokines (IL-6, TNF-α and chemerin) were associated with the clinicopathological features of breast cancer in female Saudi patients.
Background Acute myeloid leukemia (AML) is a heterogenous hematological malignancy with poor long-term survival. New drugs which improve the outcome of AML patients are urgently required. In this work, the activity and mechanism of action of the cytotoxic indole alkaloid Jerantinine B (JB), was examined in AML cells. Methods We used a combination of proliferation and apoptosis assays to assess the effect of JB on AML cell lines and patient samples, with BH3 profiling being performed to identify early effects of the drug (4 h). Phosphokinase arrays were adopted to identify potential driver proteins in the cellular response to JB, the results of which were confirmed and extended using western blotting and inhibitor assays and measuring levels of reactive oxygen species. Results AML cell growth was significantly impaired following JB exposure in a dose-dependent manner; potent colony inhibition of primary patient cells was also observed. An apoptotic mode of death was demonstrated using Annexin V and upregulation of apoptotic biomarkers (active caspase 3 and cleaved PARP). Using BH3 profiling, JB was shown to prime cells to apoptosis at an early time point (4 h) and phospho-kinase arrays demonstrated this to be associated with a strong upregulation and activation of both total and phosphorylated c-Jun (S63). The mechanism of c-Jun activation was probed and significant induction of reactive oxygen species (ROS) was demonstrated which resulted in an increase in the DNA damage response marker γH2AX. This was further verified by the loss of JB-induced C-Jun activation and maintenance of cell viability when using the ROS scavenger N-acetyl-L-cysteine (NAC). Conclusions This work provides the first evidence of cytotoxicity of JB against AML cells and identifies ROS-induced c-Jun activation as the major mechanism of action.
Cancer is a deadly disease characterized by abnormal cell proliferation. Chemotherapy is one technique of cancer treatment. Cyclophosphamide (CYP) is the most powerful chemotherapy medication, yet it has serious adverse effects. It is an antimitotic medicine that regulates cell proliferation and primarily targets quickly dividing cells, and it has been related to varying levels of infertility in humans. In the current study, we assessed the biochemical, histological, and microscopic evaluations of testicular damage following cyclophosphamide administration. Further, we have explored the potential protective impact of mesenchymal stem cell (MSCs) transplantation. The biochemical results revealed that administration of cyclophosphamide increased serum concentrations of follicle-stimulating hormone (FSH) and luteinizing hormone (LH), while it decreased serum concentrations of free testosterone hormone (TH), testicular follicle-stimulating hormone, luteinizing hormone, and free testosterone hormone concentrations, testicular total antioxidant capacity (TAC), and testicular activity of superoxide dismutase (SOD) enzyme. The histology and sperm examinations revealed that cyclophosphamide induced destruction to the architectures of several tissues in the testes, which drastically reduced the Johnsen score as well as the spermatogenesis process. Surprisingly, transplantation of mesenchymal stem cell after cyclophosphamide administration altered the deterioration effect of cyclophosphamide injury on the testicular tissues, as demonstrated by biochemical and histological analysis. Our results indicated alleviation of serum and testicular sex hormones, as well as testicular oxidative stress markers (total antioxidant capacity and superoxide dismutase activity), and nearly restored the normal appearance of the testicular tissues, Johnsen score, and spermatogenesis process. In conclusion, our work emphasizes the protective pharmacological use of mesenchymal stem cell to mitigate the effects of cyclophosphamide on testicular tissues that impair the spermatogenesis process following chemotherapy. These findings indicate that transferring mesenchymal stem cell to chemotherapy patients could significantly improve spermatogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.