Eukaryotic cells monitor and maintain protein quality through a set of protein quality control (PQC) systems whose role is to minimize the harmful effects of the accumulation of aberrant proteins. Although these PQC systems have been extensively studied in the cytoplasm, nuclear PQC systems are not well understood. The present work shows the existence of a nuclear PQC system mediated by the ubiquitin-proteasome system in the fission yeast Schizosaccharomyces pombe. Asf1-30, a mutant form of the histone chaperone Asf1, was used as a model substrate for the study of the nuclear PQC. A temperature-sensitive Asf1-30 protein localized to the nucleus was selectively degraded by the ubiquitin-proteasome system. The Asf1-30 mutant protein was highly ubiquitinated at higher temperatures, and it remained stable in an mts2-1 mutant, which lacks proteasome activity. The E2 enzyme Ubc4 was identified among 11 candidate proteins as the ubiquitin-conjugating enzyme in this system, and San1 was selected among 100 candidates as the ubiquitin ligase (E3) targeting Asf1-30 for degradation. San1, but not other nuclear E3s, showed specificity for the mutant nuclear Asf1-30, but did not show activity against wild-type Asf1. These data clearly showed that the aberrant nuclear protein was degraded by a defined set of E1-E2-E3 enzymes through the ubiquitin-proteasome system. The data also show, for the first time, the presence of a nuclear PQC system in fission yeast.In eukaryotic cells, the ubiquitin-proteasome system (UPS) 3 has a pivotal role in multiple cellular events, including the cell cycle, signal transduction, and receptor-mediated endocytosis (1-3). This system is essential for the selective degradation of many cellular proteins. The substrate proteins destined for degradation are first recognized by the ubiquitination machinery, triggering the covalent attachment of a polyubiquitin chain to the target protein. Polyubiquitinated proteins are recognized and degraded by the 26 S proteasome. The formation of the polyubiquitin chain is accomplished by a series of enzymatic reactions catalyzed by three enzymes: an E1 (ubiquitin-activating enzyme), an E2 (ubiquitin-conjugating enzyme), and an E3 (ubiquitin ligase). The step catalyzed by the E3 is crucial in determining substrate selectivity and timing of degradation, which implies that the identification and understanding of E3s is important to elucidate the mechanisms of specific substrate selection.The UPS also contributes to cellular protein quality control (PQC) (4). Aberrant or misfolded proteins are produced in the cell by mutation or environmental stress. The intracellular accumulation of these proteins causes proteotoxic or harmful effects. In humans, for example, the accumulation of aberrant proteins is thought to be associated with diseases such as Alzheimer, Huntington, Parkinson, and Creutzfeldt-Jakob diseases (5). The removal of these harmful proteins and the maintenance of homeostasis are accomplished through the selective degradation of aberrant or misfolded proteins...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.