The results indicated that adoptive immunotherapy using in vitro-activated autologous gammadelta T cells was well tolerated and induced anti-tumor effects.
Aggressive natural killer-cell (NK-cell) leukemia (ANKL) is an extremely aggressive malignancy with dismal prognosis and lack of targeted therapies. Here, we elucidate the molecular pathogenesis of ANKL using a combination of genomic and drug sensitivity profiling. We study 14 ANKL patients using whole-exome sequencing (WES) and identify mutations in STAT3 (21%) and RAS-MAPK pathway genes (21%) as well as in DDX3X (29%) and epigenetic modifiers (50%). Additional alterations include JAK-STAT copy gains and tyrosine phosphatase mutations, which we show recurrent also in extranodal NK/T-cell lymphoma, nasal type (NKTCL) through integration of public genomic data. Drug sensitivity profiling further demonstrates the role of the JAK-STAT pathway in the pathogenesis of NK-cell malignancies, identifying NK cells to be highly sensitive to JAK and BCL2 inhibition compared to other hematopoietic cell lineages. Our results provide insight into ANKL genetics and a framework for application of targeted therapies in NK-cell malignancies.
Simultaneous use of nonsteroidal anti-inflammatory drugs (NSAIDs), probenecid, and other drugs has been reported to delay the plasma elimination of methotrexate in patients. Previously, we have reported that inhibition of the uptake process cannot explain such drug-drug interactions using rats. The present study quantitatively evaluated the possible role of the transporters in such drug-drug interactions using human kidney slices and membrane vesicles expressing human ATP-binding cassette (ABC) transporters. The uptake of methotrexate by human kidney slices was saturable with a K m of 45 to 49 M. Saturable uptake of methotrexate by human kidney slices was markedly inhibited by p-aminohippurate and benzylpenicillin, but only weakly by 5-methyltetrahydrofolate. These transport characteristics are similar to those of a basolateral organic anion transporter (OAT) 3/SLC22A8. NSAIDs and probenecid inhibited the uptake of methotrexate by human kidney slices, and, in particular, salicylate, indomethacin, phenylbutazone, and probenecid were predicted to exhibit significant inhibition at clinically observed plasma concentrations. Among ABC transporters, such as BCRP/ABCG2, multidrug resistance-associated protein (MRP) 2/ABCC2, and MRP4/ABCC4, which are candidates for the luminal efflux of methotrexate, ATPdependent uptake of methotrexate by MRP4-expressing membrane vesicles was most potently inhibited by NSAIDs. Salicylate and indomethacin were predicted to inhibit MRP4 at clinical plasma concentrations. Diclofenac-glucuronide significantly inhibited MRP2-mediated transport of methotrexate in a concentration-dependent manner, whereas naproxen-glucuronide had no effect. Inhibition of renal uptake (via OAT3) and efflux processes (via MRP2 and MRP4) explains the possible sites of drug-drug interaction for methotrexate with probenecid and some NSAIDs, including their glucuronides.Drug-drug interactions involving metabolism and/or excretion processes prolong the plasma elimination half-lives leading to the accumulation of drugs in the body and potentiate pharmacological/adverse effects. Recent progress in molecular biological research has shown that many types of transporters play important roles in the tissue uptake and/or subsequent secretion of drugs in the liver and kidney, and such transporters exhibit a broad substrate specificity with a degree of overlap, suggesting the possibility of transportermediated drug-drug interactions with other substrates (Shitara et al., 2005;Li et al., 2006). Methotrexate (MTX) is an analog of natural folate and has been widely and successfully used for the treatment of neoplastic diseases and autoimmune diseases, including rheu-
Although further investigation is required to make a definite conclusion, the extent of lymphadenectomy may significantly influence its therapeutic effect, especially for patients with advanced disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.