Colloidal aggregation of organic molecules is the dominant mechanism for artifactual inhibition of proteins, and controls against it are widely deployed. Notwithstanding an increasingly detailed understanding of this phenomenon, a method to reliably predict aggregation has remained elusive. Correspondingly, active molecules that act via aggregation continue to be found in early discovery campaigns and remain common in the literature. Over the past decade, over 12 thousand aggregating organic molecules have been identified, potentially enabling a precedent-based approach to match known aggregators with new molecules that may be expected to aggregate and lead to artifacts. We investigate an approach that uses lipophilicity, affinity, and similarity to known aggregators to advise on the likelihood that a candidate compound is an aggregator. In prospective experimental testing, five of seven new molecules with Tanimoto coefficients (Tc’s) between 0.95 and 0.99 to known aggregators aggregated at relevant concentrations. Ten of 19 with Tc’s between 0.94 and 0.90 and three of seven with Tc’s between 0.89 and 0.85 also aggregated. Another three of the predicted compounds aggregated at higher concentrations. This method finds that 61 827 or 5.1% of the ligands acting in the 0.1 to 10 µM range in the medicinal chemistry literature are at least 85% similar to a known aggregator with these physical properties and may aggregate at relevant concentrations. Intriguingly, only 0.73% of all drug-like commercially available compounds resemble the known aggregators, suggesting that colloidal aggregators are enriched in the literature. As a percentage of the literature, aggregator-like compounds have increased 9-fold since 1995, partly reflecting the advent of high-throughput and virtual screens against molecular targets. Emerging from this study is an aggregator advisor database and tool (http://advisor.bkslab.org), free to the community, that may help distinguish between fruitful and artifactual screening hits acting by this mechanism.
Small molecule aggregates are considered nuisance compounds in drug discovery, but their unusual properties as colloids could be exploited to form stable vehicles to preserve protein activity. We investigated the co-aggregation of seven molecules chosen because they had been previously intensely studied as colloidal aggregators, co-formulating them with bis-azo dyes. The co-formulation reduced colloid sizes to <100 nm, and improved uniformity of the particle size distribution. The new colloid formulations are more stable than previous aggregator particles. Specifically, co-aggregation of Congo Red with sorafenib, tetraiodophenolphthalein (TIPT) or vemurafenib produced particles that are stable in solutions of high ionic strength and high protein concentrations. Like traditional, single compound colloidal aggregates, the stabilized colloids adsorbed and inhibited enzymes like β-lactamase, malate dehydrogenase and trypsin. Unlike traditional aggregates, the co-formulated colloid-protein particles could be centrifuged and re-suspended multiple times, and from re-suspended particles, active trypsin could be released up to 72 hours after adsorption. Unexpectedly, the stable colloidal formulations can sequester, stabilize, and isolate enzymes by spin-down, resuspension and release.
Colloidal aggregates of small molecules are the most common artifact in early drug discovery, sequestering and inhibiting target proteins without specificity. Understanding their structure and mechanism has been crucial to developing tools to control for, and occasionally even exploit, these particles. Unfortunately, their polydispersity and transient stability have prevented exploration of certain elementary properties, such as how they pack. Dye-stabilized colloidal aggregates exhibit enhanced homogeneity and stability when compared to conventional colloidal aggregates, enabling investigation of some of these properties. By small-angle X-ray scattering and multiangle light scattering, pair distance distribution functions suggest that the dye-stabilized colloids are filled, not hollow, spheres. Stability of the coformulated colloids enabled investigation of their preference for binding DNA, peptides, or folded proteins, and their ability to purify one from the other. The coformulated colloids showed little ability to bind DNA. Correspondingly, the colloids preferentially sequestered protein from even a 1600-fold excess of peptides that are themselves the result of a digest of the same protein. This may reflect the avidity advantage that a protein has in a surface-to-surface interaction with the colloids. For the first time, colloids could be shown to have preferences of up to 90-fold for particular proteins over others. Loaded onto the colloids, bound enzyme could be spun down, resuspended, and released back into buffer, regaining most of its activity. Implications of these observations for colloid mechanisms and utility will be considered.
Excipients, considered “inactive ingredients,” are a major component of formulated drugs and play key roles in their pharmacokinetics. Despite their pervasiveness, whether they are active on any targets has not been systematically explored. We computed the likelihood that approved excipients would bind to molecular targets. Testing in vitro revealed 25 excipient activities, ranging from low-nanomolar to high-micromolar concentration. Another 109 activities were identified by testing against clinical safety targets. In cellular models, five excipients had fingerprints predictive of system-level toxicity. Exposures of seven excipients were investigated, and in certain populations, two of these may reach levels of in vitro target potency, including brain and gut exposure of thimerosal and its major metabolite, which had dopamine D3 receptor dissociation constant Kd values of 320 and 210 nM, respectively. Although most excipients deserve their status as inert, many approved excipients may directly modulate physiologically relevant targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.