This paper deals with the vibration quenching problem of the one-degree-of-freedom system with a limited power supply. This system is forced by centrifugal force of rotating unbalance, and the system is quenched using a Hula-Hoop and a motor to assist the rotation of Hula-Hoop. The entrainment region, the amount of vibration quenching, and the energy consumptions of the system are studied from the approximate analysis using the averaging method, the numerical integration analysis, and the experiment. Following was made clear: (1) When the unbalance is large, the entrainment region of the voltage of the assistant motor is large. On the other hand, when the unbalance is small, the entrainment region becomes narrow. (2) When the unbalance is large, by setting the voltage of the assist motor to a value smaller than the optimum value for vibration control, within the range that satisfies the allowable vibration amplitude level, the increase amount of the energy consumption becomes low. (3) The approximate solutions obtained by the averaging method are in good agreement with those obtained by the numerical integration method, and the characteristics of these results coincide with those of the results obtained by experiment.
according to the given response specification, and •-is the width of the window, namely, the length of the pulse response. The results of synthesizing SAWF by means of the new window function are reported. In synthesizing, one unapodized transducer and one length-weighted transducer are used. The transducers have a double electrode structure with each half of the double electrode individually weighted.3:00 GG6. Loudspeaking telephone using echo eanee!!ers and a voiceswitching circuit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.