An efficient synthesis of antitumor marine natural product (+)-pericosine A was achieved from (-)-quinic acid in 11.7% overall yield, which is 20 times better than our previously reported synthesis. The crucial steps of this synthesis include the regio- and stereoselective bromohydrination of an unstable diene and the ring opening of an epoxide. This synthetic route was applicable to a synthesis of (+)-pericosine C and also to a synthesis of (-)-pericosine C.
A new class of rhodamine luminophores, 3',3''-bis(oxospiroisobenzofuran)-3,7-bis(dialkylamino)benzopyrano-xanthene derivatives (ABPX), have been successfully developed. The emission behavior of ABPX series is directly opposite to the concentration quenching of conventional rhodamine dyes. ABPX series exhibit aggregation-induced emission enhancement (AIEE).
The first total synthesis of (+)- and (-)-pericosine A has been achieved, enabling the revision and determination of the absolute configuration of this antitumor natural product as methyl (3S,4S,5S,6S)-6-chloro-3,4,5-trihydroxy-1-cyclohexene-1-carboxylate. Every step of this total synthesis proceeded well with excellent stereoselectivity. Structures of the intermediates in crucial steps were confirmed by detailed 2D NMR analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.