[1] Nobeoka Thrust in Kyushu, southwest Japan, was investigated to understand the relationship between the seismogenic out-of-sequence thrust (OST) and fluid flow in accretionary prisms. The Nobeoka Thrust is a fossilized OST, being active at seismogenic depth. The hanging wall exhibits a penetrative plastic deformation, while a brittle, cataclastic mélange-like occurrence characterizes the footwall, although both of them have same shale and sandstone-dominant protolith. Vitrinite reflectance analyses indicate that the maximum temperatures of the hanging wall and footwall are approximately 320 and 250°C, respectively. This thermal gap across the thrust corresponds to 8.6-14.4 km of displacement assuming a 28-47°C/km geothermal gradient. The brittle damage zone of the thrust is asymmetric: only 2 m for hanging wall side and 100 m for footwall. Three types of mineral veins, quartz, and carbonate are well developed, especially in the damaged footwall: the tension crack-filling vein, the fault-filling vein, and postmélange one. The first is harmonious with fabric, perpendicular to the P surface. Fluid inclusion geothermobarometry indicates the P-T of fluid in the intensively damaged zone of the footwall is $300°C, 230 -250 MPa, higher than that from vitrinite reflectance, which suggests that hydrothermal fluid flow is associated with deformation. The same type vein in the lowest portion of the footwall-damaged zone includes a much lower P-T fluid. This difference suggests that continuous underplating caused the damaged zone to propagate downward with cooling and shallowing, which differs from faults characterized by shear localization and might be unique to aquiferous OST in accretionary complexes. Citation: Kondo, H., G. Kimura, H. Masago, K. Ohmori-Ikehara, Y. Kitamura, E. Ikesawa, A. Sakaguchi, A. Yamaguchi, and S. Okamoto (2005), Deformation and fluid flow of a major out-of-sequence thrust located at seismogenic depth in an accretionary complex: Nobeoka Thrust in the Shimanto Belt, Kyushu, Japan, Tectonics, 24, TC6008,
Photographic surveying of the minority carrier diffusion length distribution in polycrystalline silicon solar cells was proposed. Light emission from the cell under the forward bias was captured by a charge coupled device camera. We have found that the intensity distribution of light emission clearly agreed with the mapping of minority carrier diffusion length in polycrystalline silicon active layers. The emission intensity had a one-to-one relationship with the minority carrier diffusion length, which yielded a semiquantitative analysis method of the diffusion length mapping and the detection of the deteriorated areas.
The Mugi Mélange located in western Shikoku of the Shimanto Belt shows systematic Y‐P deformation fabrics formed by microshear and pressure solution that penetrate throughout the mélange pile. Magnetic susceptibility ellipsoids obtained from the anisotropy of magnetic susceptibility (AMS) are highly oblate. Maximum and minimum axes of the ellipsoids are consistent with the shear orientation of the mélange and the mean pole of P surfaces, respectively. This agreement suggests that the Mugi Mélange was formed as a result of underthrusting of trench filling sediment. Vitrinite reflectance ranges from 2.52% to 3.08%, which corresponds to a maximum paleotemperature of ∼180–200°C. Pseudotachylyte, evidence of a seismogenic slip, was found in the upper boundary roof fault of the Mugi Mélange. However, there is not a thermal gap between the mélange and the overlying coherent piles, and the temperature from vitrinite reflectance gradually rises downward from the coherent piles to the mélange beyond the boundary fault, which suggests that paleoisotherms parallel the boundary fault orientation. The isotherms in the seismogenic zone are estimated as subparallel to the plate boundary décollement. Therefore the setting of the cataclastic boundary fault, which includes pseudotachylyte, appears to be a major plate boundary thrust or a subhorizontal splay fault. A probable geologic setting that accounts for the Mugi Mélange and the seismogenic roof fault is partitioning of the slip along the plate boundary fault in space and time: interseismic slip in the mélange and seismic slip along the roof fault.
A principle of organic memory device using a bistable photochromic molecule is presented that allows extremely high bit densities and very low power consumption. This device is based on an isomerization reaction of photochromic diarylethene molecule via its excited state by an electric carrier injection, not by photon absorption. Experimental data show that the reversible writing and nondestructive reading of information by the carrier injection is feasible. The advantages and properties of such an organic semiconductor memory using a bistable molecule are discussed.
The electroluminescence intensity from Si cells under the forward bias was found to have one to one quantitative agreement with the minority carrier diffusion length. Based on the diffusion equation and simple p-n diode model, the electroluminescence intensity was analyzed relative to the cell performance. Electroluminescence intensity is proportional to the product of the injected minority carrier density and the effective diffusion length. The diode ideality factor n can be deduced by measuring the electroluminescence intensity as a function of the forward injection current. Among various crystalline silicon cells including single and polycrystalline types, the measured electroluminescence intensity at a fixed forward current has a tight relationship with the open circuit voltage of each cell, which gives a very convenient way to evaluate cell performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.