-Liquid flow in the impeller swept region of vessels with a turbine-type agitator was examined for the flow path between the neighboring blades of the rotating impeller. Visualization of the flow and its measurement were done using particle tracking velocimetry with a camera rotating along with the impeller. Internal liquid flow of the impeller differed when the velocity magnitudes were compared in conditions with and without baffles. Larger circumferential and radial velocities were observed without the baffles and with the baffles, respectively, which was considered to result in the difference of impeller power transmission. Efficiencies produced, based on the flow-head concept, reflected the impeller power characteristics. The turbine-type impeller as an actuator was demonstrated to improve in the flow characteristics with viscous losses increased by the baffles. In terms of impeller efficiencies based on the power consumption, the effect of baffles for the energy was as a decreased transmission and an increased transport.
For a vessel agitated by a Rushton turbine impeller, the efficacy of partial baffles was evaluated through examination of the liquid flow and impeller power characteristics. The bulk flow formed a pattern having circulation loops of different intensity and largeness depending on the baffle condition: the baffle length relative to the liquid depth for the vessel. Consequently, the liquid flow within the vessel affected the impeller power number. The characteristic circulation loops, which generally reflect the baffle efficacy, were assessed in terms of the discharge flow through the impeller and the energy transmission within the vessel based on the flow velocity profiles. The shorter length of baffles fitted partially in the upper half of the liquid phase was revealed to be effective, supported in combination by a comparable discharge flow and a successful energy transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.