In this work, we explore graph partitioning (GP) using quantum annealing on the D-Wave 2X machine. Motivated by a recently proposed graph-based electronic structure theory applied to quantum molecular dynamics (QMD) simulations, graph partitioning is used for reducing the calculation of the density matrix into smaller subsystems rendering the calculation more computationally e cient. Unconstrained graph partitioning as community clustering based on the modularity metric can be naturally mapped into the Hamiltonian of the quantum annealer. On the other hand, when constraints are imposed for partitioning into equal parts and minimizing the number of cut edges between parts, a quadratic unconstrained binary optimization (QUBO) reformulation is required. This reformulation may employ the graph complement to fit the problem in the Chimera graph of the quantum annealer. Partitioning into 2 parts, 2 N parts recursively, and k parts concurrently are demonstrated with benchmark graphs, random graphs, and small material system density matrix based graphs. Results for graph partitioning using quantum and hybrid classical-quantum approaches are shown to equal or out-perform current "state of the art" methods.
A very important problem in combinatorial optimization is partitioning a network into communities of densely connected nodes; where the connectivity between nodes inside a particular community is large compared to the connectivity between nodes belonging to different ones. This problem is known as community detection, and has become very important in various fields of science including chemistry, biology and social sciences. The problem of community detection is a twofold problem that consists of determining the number of communities and, at the same time, finding those communities. This drastically increases the solution space for heuristics to work on, compared to traditional graph partitioning problems. In many of the scientific domains in which graphs are used, there is the need to have the ability to partition a graph into communities with the "highest quality" possible since the presence of even small isolated communities can become crucial to explain a particular phenomenon. We have explored community detection using the power of quantum annealers, and in particular the D-Wave 2X and 2000Q machines. It turns out that the problem of detecting at most two communities naturally fits into the architecture of a quantum annealer with almost no need of reformulation. This paper addresses a systematic study of detecting two or more communities in a network us-ing a quantum annealer.
In recent years, a number of quantum computing devices with small numbers of qubits have become available. A hybrid quantum local search (QLS) approach that combines a classical machine and a small quantum device to solve problems of practical size is presented. The proposed approach is applied to the network community detection problem. QLS is hardware-agnostic and easily extendable to new quantum computing devices as they become available. It is demonstrated to solve the 2-community detection problem on graphs of sizes of up to 410 vertices using the 16-qubit IBM quantum computer and D-Wave 2000Q, and compare their performance with the optimal solutions. The results herein demonstrate that QLS performs similarly in terms of quality of the solution and the number of iterations to convergence on both types of quantum computers and it is capable of achieving results comparable to state-of-the-art solvers in terms of quality of the solution including reaching the optimal solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.