Enhancing the flare gas/air mixing process above the flare tip is critical to optimizing flare performance in terms of emissions. A new flare tip design using an aerodynamic nozzle (such as that used in jet engines to increase thrust on takeoff) has been developed to control the flare gas exit velocity and the local mixing above the flare tip. The work described in this paper focuses on understanding the fluid mixing for the new flare tip design. The flow field of a jet injected into a crossflow is found in several systems, including combustion equipment, drying systems, quenching systems, and mixing tanks. A computational fluid dynamics (CFD) technique for simulating radial slot jet flow into crossflow has been validated with experimental results. Sets of experimental data were obtained from an experimental setup, which was designed and built in our laboratory. A hotwire anemometer was used to obtain the measurements of the radial velocity profiles at different axial positions and the centerline velocity profiles that are produced from the impingement of these axial profiles of velocity. A comparison between the simulation velocity profiles and experimental data was performed, and good agreement between the profiles was clearly observed. The obtained data showed that the centerline velocities were increased significantly just after the injection plane of the radial slot due to the reduction of cross-sectional area available for the flow.
Computational fluid dynamics (CFD) was used to simulate multi tip flare system with different operating conditions during ignition time. Single tip and three tips flare systems were simulated and verified against experimental test to get CFD combustion model that required for multi tip flare system. Natural gas, propane, propylene, ethylene and xylene were used as flaring gases in simulated tests of single and three tips flare under an open environment that carried out at the Zeeco facility in Tulsa, OK. This study aimed to predict the soot formation and heat radiation from full multi tip flare field by using CFD modeling with verified combustion model and large eddies simulation (LES) turbulence model with a reduced four step combustion mechanism. The results showed that the multi tip flare system performance can be predicted by using C3d tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.