The interaction of secondary flow with the main passage flow results in entropy generation; this accounts for considerable losses in turbomachines. Low aspect ratio blades in an axial turbine lead to a high degree of secondary flow losses. A particular interest is the reduction in secondary flow strength at the turbine casing, which adversely affects the turbine performance. This paper presents a selective review of effective techniques for improving the performance of axial turbines by turbine end wall modifications. This encompasses the use of axisymmetric and non-axisymmetric end wall contouring and the use of fences. Specific attention is given to non-axisymmetric end walls and to their effect on secondary flow losses. A baseline three-dimensional steady RANS k-ω SST model, with axisymmetric walls, is validated against experimental measurements from the Institute of Jet Propulsion and Turbomachinery at the Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Germany, with comparative solutions generated by ANSYS Fluent and OpenFOAM. The predicted performance of the stator passage with an axisymmetric casing is compared with that from using a contoured casing with a groove designed using the Beta distribution function for guiding the groove shape. The prediction of a reduced total pressure loss coefficient with the application of the contoured casing supports the groove design approach based on the natural path of the secondary flow features. This work also provided an automated workflow process, linking surface definition in MATLAB, meshing in ICEM CFD, and flow solving and post-processing OpenFOAM. This has generated a casing contouring design tool with a good portability to industry, to design and optimize new turbine blade passages.
The performance of axial flow turbines is affected by losses from secondary flows that result in entropy generation. Reducing these secondary flow losses improves the turbine performance. This paper investigates the effect of applying a non-axisymmetric contour to the hub of a representative one-and-half stage axial turbine on the turbine performance. An analytical end-wall hub surface definition with a guide groove is used to direct the pressure side branch of the horseshoe vortex away from the blade suction side, so to retard its interaction with the suction side secondary flow and thus decrease the losses. This groove design is a development of the concept outlined in Obaida et al. (2016). A baseline three-dimensional steady RANS k-ω SST model, with axisymmetric walls, is validated against reference experimental measurements from a one-and-half stage turbine at the Institute of Jet Propulsion and Turbomachinery at RWTH Aachen, Germany. The CFD predictions of the non-axisymmetric hub with the guide groove show a decrease in the total pressure loss coefficient. The design work-flow is generated using the Alstom Process and Optimisation Workbench (APOW), which sensibly reduced the designer workload. The implementation of the guide groove has excellent portability to the turbomachinery industry and this makes this method promising for delivering the UK energy agenda through more efficient power turbines.
The unsteady and three-dimensional nature of the flow past axial compressor blading poses substantial challenges to the design of the main flow passage. High aspect ratio blading is amenable to the approach of splitting the design task between the cascade and the meridional planes. However, the three-dimensional flows increasingly affect the stage aerodynamic performance with decreasing blade aspect ratios. At very high load conditions, corner vortices can grow to two-thirds of the blade span, under the influence of the pitchwise pressure gradient, causing significant blockage and loss. A survey of treatments for three-dimensional flows highlights a variety of approaches, including longitudinal and tangential slots for suction and blowing, fences, turning vanes, fillets, and grooves. The merits and issues exposed by past implementations of these end-wall treatments are summarized. Considered together, these arrangements display a variable and open approach, which points towards an opportunity for considering a more common framework, led by a greater understanding of the flow physics. Preliminary work on the parametrization of end-wall grooves has highlighted some promising topological features of end walls generated by using the Beta distribution function as the guide curve. This seemingly unexplored application of the Beta function to axial compressor end wall design promises a better fit with the pitchwise periodic axial compressor geometry than other guide curve functions considered herein and used in the past.
Improvements in stage isentropic efficiency and reductions in total pressure loss are sought in a 1.5 stage axial turbine. This is representative of power generation equipment used in thermal power cycles, which delivers about 80% of the 20 × 1012 kWh world-wide electricity. Component-level improvements are therefore timely and important toward achieving carbon dioxide global emission targets. Secondary flow loss reduction is sought by applying a nonaxisymmetric endwall design to the turbine stator hub. A guide groove directs the pressure side branch of the horseshoe vortex away from the airfoil suction side, using a parametric endwall hub surface, which is defined as to obtain first-order smooth boundary connections to the remainder of the passage geometry. This delays the onset of the passage vortex and reduces its associated loss. The Automatic Process and Optimization Workbench (apow) generates a Kriging surrogate model from a set of Reynolds-averaged Navier–Stokes simulations, which is used to optimize the hub surface. The three-dimensional steady Reynolds-averaged Navier–Stokes model with an axisymmetric hub is validated against reference experimental measurements from the Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen. Comparative computational fluid dynamics (CFD) predictions with an optimized nonaxisymmetric hub show a decrease in the total pressure loss coefficient and an increase in the isentropic stage efficiency at and off design conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.