The COVID-19 pandemic has presented unprecedented challenges for university students, creating uncertainties for their academic careers, social lives, and mental health. Our study utilized a machine learning approach to examine the degree to which students’ college adjustment and coping styles impacted their adjustment to COVID-19 disruptions. More specifically, we developed predictive models to distinguish between well-adjusted and not well-adjusted students in each of five psychological domains: academic adjustment, emotionality adjustment, social support adjustment, general COVID-19 regulations response, and discriminatory impact. The predictive features used for these models are students’ individual characteristics in three psychological domains, i.e., Ways of Coping (WAYS), Adaptation to College (SACQ), and Perceived Stress Scale (PSS), assessed using established commercial and open-access questionnaires. We based our study on a proprietary survey dataset collected from 517 U.S. students during the initial peak of the pandemic. Our models achieved an average of 0.91 AUC score over the five domains. Using the SHAP method, we further identified the most relevant risk factors associated with each classification task. The findings reveal the relationship of students’ general adaptation to college and coping in relation to their adjustment during COVID-19. Our results could help universities identify systemic and individualized strategies to support their students in coping with stress and to facilitate students’ college adjustment in this era of challenges and uncertainties.
Asian American students have experienced additional physical and emotional hardships associated with the COVID-19 pandemic due to increased xenophobic and anti-Asian discrimination. This study investigates different coping patterns and risk factors affecting Asian and non-Asian college students in response to COVID-19 challenges by studying the differences in their responses within four domains after the onset of the pandemic: academic adjustment, emotional adjustment, social support, and discriminatory impacts related to COVID-19. We first employed a machine learning approach to identify well-adjusted and poorly adjusted students in each of the four domains for the Asian and non-Asian groups, respectively. Next, we applied the SHAP method to study the principal risk factors associated with each classification task and analyzed the differences between the two groups. We based our study on a proprietary survey dataset collected from U.S. college students during the initial peak of the pandemic. Our findings provide insights into the risk factors and their directional impact affecting Asian and non-Asian students’ well-being during the pandemic. The results could help universities establish customized strategies to support these two groups of students in this era of uncertainty. Applications for international communities are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.