Fermented dairy products have long been associated with positive health benefits. The present study was undertaken to evaluate the physicochemical and sensory properties, viable probiotic counts, antioxidant activity and total phenolic content of probiotic yoghurt made by reconstituting of whole milk powder in aqueous fennel seed extract. Different concentrations of fennel aqueous seeds extract (2%, 4% and 6% w/v) were used as a substitute for water to reconstitute whole milk powder in formulations of yoghurt as functional additives. Interestingly, the use of aqueous extract of fennel seeds in the reconstituted yoghurt milk did not affect yoghurt composition (moisture, protein, fat and ash contents) compared to plain yoghurt. The titratable acidity significantly decreased after using aqueous fennel seed extract in the yogurt manufacture. In this regard, the titratable acidity value was 0.85 in the control yogurt at the fresh period and 1.14 after 21 days of storage, while this value significantly decreased in the yogurt treatments with 2%, 4% and 6% aqueous fennel seed extract to 80, 0.77 and 0.72, respectively, at fresh period and reached 1.03, 0.96 and 0.94, respectively, after 21 days of storage (p < 0.05). Conversely, the pH values significantly increased (p < 0.05) following the addition of aqueous fennel seed extract in the yogurt manufacture. Moreover, the total phenolic content significantly increased (p < 0.05) from 38.60 (mg GAE/L), in fresh plain yogurt, to 44.80, 53.20 and 64.30 (mg GAE/L), in 2% fennel extract yoghurt (FEY2), 4% fennel extract yoghurt (FEY4) and 6% fennel extract yoghurt (FEY6), respectively. Likewise, the antioxidant activity significantly increased (p < 0.05) from 0.11 (mM TE) in fresh plain yogurt to 0.18, 0.26 and 0.32 (mM TE) in (FEY2), (FEY4) and (FEY6), respectively. The survival of Lactobacillus acidophilus, Streptococcus thermophilus and Bifidobacterium bifidum decreased during storage time in all yoghurt treatments, although it stood at recommended levels for health effects (at least 106 cfu/mL in traditional yoghurt). For sensory evaluation, FEY4 was more acceptable, followed by FEY6, FEY2 and PY, respectively. Collectively, the present study provides useful information about the bioactivity, physicochemical and sensory properties of probiotic yoghurt made from whole milk powder reconstituted in aqueous fennel extract.
Fermented camel milk is rich in nutrients and vitamins necessary for the health of humans and has therapeutic properties. Date palm camel milk has been reported to be beneficial for preventing and treating various diseases in Arab countries. This study targeted the production of probiotic fermented camel milk fortified with date syrup. In addition, the effect of adding date syrup as a prebiotic and flavoring agent to probiotic fermented camel milk on the physicochemical, phytochemical, microbiological, and sensory properties of probiotic fermented camel milk during storage was investigated. Probiotic fermented camel milk without adding date syrup served as a control, and the other two treatments were supplemented with date syrup at ratios of 6.0% and 8.0%. Probiotic fermented camel milk was analyzed after 1 day and 15 days from storage at 5 ± 1 °C. Interestingly, the present study revealed that the addition of date syrup significantly (p ≥ 0.05) increased total solids (TS), ash, Na, K, Fe, acetaldehyde, total phenolic contents, and titratable acidity, viscosity, and antioxidant values of resultant synbiotic fermented camel milk, and this increase was proportional to the level of date syrup fortification. In addition, non-significant changes in these components were observed during the storage period. However, total protein and fat content did not show significant changes. Furthermore, the addition of date syrup significantly increased (p ≥ 0.05) the total bacterial and Bifidobacteria counts, and this increase was associated with the level of the addition of date syrup. The addition of date syrup also significantly (p ≥ 0.05) improved the sensory scores for flavor, consistency, appearance, and total scores of resultant products. Moreover, the addition of date syrup at a level of 8% showed the highest sensory scores. In conclusion, probiotic fermented camel milk could be produced using a probiotic strain and flavored with date syrup at a level of 8%.
The consumption of plant-based dairy alternatives has increased rapidly around the world as a result of numerous positive health effects. Little information is available about the potential use of watermelon seed milk in the manufacture of yoghurt. The present study was undertaken to investigate the remedial action of yoghurt enriched with watermelon seed milk in renal injured hyperuricemic rats. A new yoghurt, substituting cow’s milk with different proportions of watermelon seed milk was prepared, followed by evaluation of its acceptability and functionality. Four different types of yoghurt were prepared from cow’s milk containing 3% fat, with different proportions of blended watermelon seed milk (0.0, 25, 50 and 75%). Sensorial traits, i.e., appearance, flavor, body and texture, and overall acceptability demonstrated that the blended treatment (50% cow’s milk and 50% watermelon seed milk.) was the most acceptable. This blend was then tested as an anti-hyperuricemia agent in rats. In this respect, twenty-four male albino rats were assigned into four groups (n = 6). The first group was solely administered a standard diet, and served as the negative control. The other rats (n = 18) received a basal diet including 20 g/kg dietary potassium oxonate in order to induce hyperuricemia. The hyperuricemic rats were then divided into three groups; the first group did not receive any treatment and served as the positive control, while the second and third groups were administered 10% cow’s milk yoghurt and 10% watermelon seed milk yoghurt, respectively. Interestingly, the results showed that the hyperuricemic group receiving a diet supplemented with 10% watermelon seed milk yoghurt was not significantly different from the negative control in the measured biological parameters, and saw a significant improvement in renal function compared to the positive control. The biologically favorable action of watermelon seed milk yoghurt could be attributed to its potential promotion of antioxidant status via enhancement of the activities of superoxide dismutase, catalase, and glutathione transferase. Collectively, this study concluded that watermelon seed milk can be used in yoghurt manufacturing in proportions of up to 50%, and may improve kidney function as an anti-hyperuricemic agent.
Colon illnesses, particularly ulcerative colitis, are considered a major cause of death in both men and women around the world. The present study investigated the underlying molecular mechanisms for the potential anti-inflammatory effect of Dapagliflozin (DAPA) against ulcerative colitis (UC) induced by intracolonic instillation of 3% v/v acetic acid (AA). DAPA was administered to rats (1 mg/kg, orally) for two weeks during the treatment regimen. Interestingly, compared to the normal group, a marked increase in the index of colon/body weight, colon weight/colon length ratio, serum lactate dehydrogenase (LDH), and C-reactive protein (CRP), besides decrease in the serum total antioxidant capacity (TAC), were reported in the AA control group (p ˂ 0.05). Elevation in colon monocyte chemoattractant protein (MCP1), Interleukin 18 (IL-18), and inflammasome contents were also reported in the AA control group in comparison with the normal group. In addition, colon-specimen immunohistochemical staining revealed increased expression of nuclear factor-kappa B (NF-κB) and Caspase-3 with histopathological changes. Moreover, DAPA significantly (p ˂ 0.05) reduced the colon/body weight index, colon weight/colon length ratio, clinical evaluation, and macroscopic scoring of UC, and preserved the histopathological architecture of tissues. The inflammatory biomarkers, including colon MCP1, IL-18, inflammasome, Caspase-3, and NF-κB, were suppressed following DAPA treatment and oxidants/antioxidants hemostasis was also restored. Collectively, the present data demonstrate that DAPA represents an attractive approach to ameliorating ulcerative colitis through inhibiting MCP1/NF-κB/IL-18 pathways, thus preserving colon function. Antioxidant, anti-inflammatory, and anti-apoptotic properties of DAPA are implicated in its observed therapeutic benefits.
Thymoquinone (TQ) is an active constituent in Nigella sativa, and is extensively reported for its distinguished antioxidant, and anti-in ammatory bioactivities. Despite the local protective response of the acute in ammation, it contributes to the development of various disease conditions such as cell death, organ damage, or genesis of tumors. Hence, in this study, the effects of orally administered TQ (50 and 100 mg/kg) for 14 days against edema development, oxidative stress, and in ammation were investigated in paw edema induced by carrageenan in mice. Indomethacin (10 mg/kg) was used as a reference drug. The results revealed that TQ reduced the paw edema volume in a time-dependent manner, attenuated acetic acid-provoked writhing movements, and reduced xylene-triggered ear edema.Hematological ndings revealed marked normalization of altered counts of WBCs, and platelets. Furthermore, paw tissue levels of MDA and NO showed marked decreases together with increases Nrf2, GSH, SOD, CAT, GPx, and GR after TQ administration. Additionally, TQ decreased the levels of proin ammatory mediators, such as IL-1b, TNF-α, IL-6, MCP-1, CRP, MPO, and NF-κB in the in amed paw tissue. Moreover, appreciable decreases were recorded in COX-2 and its product (PGE-2) as well as the immune reaction of TNF-α in TQ-treated mice. Histopathological ndings further validated the potential antioedematous, anti-in ammatory power of TQ in in amed tissues. Conclusively, the obtained ndings encourage the potent application of TQ to subside the acute in ammatory events because of its striking antioxidant and anti-in ammatory properties in the in amed paw tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.