The integration of unmanned aerial vehicles (UAVs) with mobile edge computing (MEC) and Internet of Things (IoT) technology in smart farms is pivotal for efficient resource management and enhanced agricultural productivity sustainably. This paper addresses the critical need for optimizing task offloading in secure UAV-assisted smart farm networks, aiming to reduce total delay and energy consumption while maintaining robust security in data communications. We propose a multiagent deep reinforcement learning (DRL)-based approach using a deep double Q-network (DDQN) with an action mask (AM), designed to manage task offloading dynamically and efficiently. The simulation results demonstrate the superior performance of our method in managing task offloading, highlighting significant improvements in operational efficiency by reducing delay and energy consumption. This aligns with the goal of developing sustainable and energy-efficient solutions for next-generation network infrastructures, making our approach an advanced solution for achieving both performance and sustainability in smart farming applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.