Impaired absorption of electrolytes is a hallmark of diarrhea associated with inflammation or enteric infections. Intestinal epithelial luminal membrane NHE3 (Na/H exchanger 3) and DRA (Down-Regulated in Adenoma; Cl/HCO exchanger) play key roles in mediating electroneutral NaCl absorption. We have previously shown decreased NHE3 and DRA function in response to short-term infection with enteropathogenic E coli (EPEC), a diarrheal pathogen. Recent studies have also shown substantial downregulation of DRA expression in a diarrheal model of infection with Citrobacter rodentium, the mouse counterpart of EPEC. Since our previous studies showed that the probiotic Lactobacillus acidophilus (LA) increased DRA and NHE3 function and expression and conferred protective effects in experimental colitis, we sought to evaluate the efficacy of LA in counteracting NHE3 and DRA inhibition and ameliorating diarrhea in a model of C rodentium infection. FVB/N mice challenged with C rodentium [1 × 10 colony-forming units (CFU)] with or without administration of live LA (3 × 10 CFU) were assessed for NHE3 and DRA mRNA and protein expression, mRNA levels of carbonic anhydrase, diarrheal phenotype (assessed by colonic weight-to-length ratio), myeloperoxidase activity, and proinflammatory cytokines. LA counteracted C rodentium-induced inhibition of colonic DRA, NHE3, and carbonic anhydrase I and IV expression and attenuated diarrheal phenotype and MPO activity. Furthermore, LA completely blocked C rodentium induction of IL-1β, IFN-γ, and CXCL1 mRNA and C rodentium-induced STAT3 phosphorylation. In conclusion, our data provide mechanistic insights into antidiarrheal effects of LA in a model of infectious diarrhea and colitis.
Background & Aims Diarrhea associated with inflammatory bowel diseases (IBD) has been associated with increased levels of inflammatory cytokines, including tumor necrosis factor (TNF). The intestinal mucosa of patients with IBD has reduced expression of solute carrier family 26 member 3 (SLC26A3, also called DRA). We investigated whether TNF directly affects expression of DRA in human intestinal epithelial cells (IECs) and in intestines of mice, and studied the mechanisms of these effects. Methods We performed quantitative reverse transcription PCR, immunofluorescence, and immunoblot analyses of Caco-2, HT-29, and T-84 cells human IECs cultured in 2 or 3 dimensions with or without TNF (50 ng/ml for 6–24 hrs). We purified nuclear extracts and quantified NF-κB activation and DNA binding. We isolated intestinal crypts from C57/BL6 mice, cultured enteroids, incubated these with TNF (50 ng/ml, 24 hrs), and quantified mRNAs. DRA-mediated exchange of Cl− for HCO3− was measured by uptake of 125I. Expression of the NFKB inhibitor alpha (NFKBIA, also called IKBA) was knocked down in Caco-2 or HT-29 cells with small interfering RNAs. Activation of NF-κB in response to TNF was measured by luciferase reporter assays; binding of the NF-κB subunit p65 in cells was analyzed in chromatin precipitation assays. DRA promoter activity was measured in a luciferase reporter assay. C57BL/6J mice were injected with TNF (5 μg/mouse for 3–6 hrs) or vehicle (control); intestines were collected and analyzed by immunofluorescence, or RNA and protein were collected from the mucosa. Results Incubation of IECs with TNF reduced expression of DRA. Knockdown of IKBA in IECs led to nuclear translocation of the NF-κB subunit p65 and reduced levels of DRA mRNA and protein. Expression of a transgene encoding p65 or p50 in IECs led to significant reductions in the promoter activity of DRA and its expression. In chromatin precipitation assays, p65 bound directly to the promoter of DRA, at the regions of −935 of −629 and −375 to −84. Injection of mice with TNF or incubation of crypt-derived organoids with TNF reduced their expression of DRA mRNA and protein. Conclusions In human IECs and intestinal tissues from mice, we found TNF to activate NF-κB, which reduced expression of the Cl− to HCO3− exchanger DRA (SLC26A3), via direct binding to the promoter of DRA. This pathway is an important therapeutic target for IBD-associated diarrhea.
Human milk contains biologically important amounts of transforming growth factor-β2 isoform (TGF-β2), which is presumed to protect against inflammatory gut mucosal injury in the neonate. In preclinical models, enterally administered TGF-β2 can protect against experimental necrotizing enterocolitis, an inflammatory bowel necrosis of premature infants. In this study, we investigated whether TGF-β bioactivity in human preterm milk could be enhanced for therapeutic purposes by adding recombinant TGF-β2 (rTGF-β2) to milk prior to feeding. Milk-borne TGF-β bioactivity was measured by established luciferase reporter assays. Molecular interactions of TGF-β2 were investigated by nondenaturing gel electrophoresis and immunoblots, computational molecular modeling, and affinity capillary electrophoresis. Addition of rTGF-β2 (20-40 nM) to human preterm milk samples failed to increase TGF-β bioactivity in milk. Milk-borne TGF-β2 was bound to chondroitin sulfate (CS) containing proteoglycan(s) such as biglycan, which are expressed in high concentrations in milk. Chondroitinase treatment of milk increased the bioactivity of both endogenous and rTGF-β2, and consequently, enhanced the ability of preterm milk to suppress LPS-induced NF-κB activation in macrophages. These findings provide a mechanism for the normally low bioavailability of milk-borne TGF-β2 and identify chondroitinase digestion of milk as a potential therapeutic strategy to enhance the anti-inflammatory effects of preterm milk.
Clostridium difficile infection (CDI) is the primary cause of nosocomial diarrhea in the United States. Although C. difficile toxins A and B are the primary mediators of CDI, the overall pathophysiology underlying C. difficile-associated diarrhea remains poorly understood. Studies have shown that a decrease in both NHE3 (Na/H exchanger) and DRA (downregulated in adenoma, Cl/[Formula: see text] exchanger), resulting in decreased electrolyte absorption, is implicated in infectious and inflammatory diarrhea. Furthermore, studies have shown that NHE3 is depleted at the apical surface of intestinal epithelial cells and downregulated in patients with CDI, but the role of DRA in CDI remains unknown. In the current studies, we examined the effects of C. difficile toxins TcdA and TcdB on DRA protein and mRNA levels in intestinal epithelial cells (IECs). Our data demonstrated that DRA protein levels were significantly reduced in response to TcdA and TcdB in IECs in culture. This effect was also specific to DRA, as NHE3 and PAT-1 (putative anion transporter 1) protein levels were unaffected by TcdA and TcdB. Additionally, purified TcdA and TcdA + TcdB, but not TcdB, resulted in a decrease in colonic DRA protein levels in a toxigenic mouse model of CDI. Finally, patients with recurrent CDI also exhibited significantly reduced expression of colonic DRA protein. Together, these findings indicate that C. difficile toxins markedly downregulate intestinal expression of DRA which may contribute to the diarrheal phenotype of CDI. NEW & NOTEWORTHY Our studies demonstrate, for the first time, that C. difficile toxins reduce DRA protein, but not mRNA, levels in intestinal epithelial cells. These findings suggest that a downregulation of DRA may be a critical factor in C. difficile infection-associated diarrhea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.