The transcriptional repressor CBFA2T3 is a putative breast tumor suppressor. To define the role of CBFA2T3, we used a segment of this protein as bait in a yeast two-hybrid screen and identified a novel uncharacterized protein, ZNF652. In general, primary tumors and cancer cell lines showed lower expression of ZNF652 than normal tissues. Together with the location of this gene on the long arm of chromosome 17q, a region of frequent loss of heterozygosity in cancer, these results suggest a possible role of ZNF652 in tumorigenesis. In silico analysis of this protein revealed that it contains multiple classic zinc finger domains that are predicted to bind DNA. Coimmunoprecipitation assays showed that ZNF652 strongly interacts with CBFA2T3 and this interaction occurs through the COOH-terminal 109 amino acids of ZNF652. In contrast, there was a weak interaction of ZNF652 with CBFA2T1 and CBFA2T2, the other two members of this ETO family. Transcriptional reporter assays further confirmed the strength and selectivity of the ZNF652-CBFA2T3 interaction. The transcriptional repression of growth factor independent-1 (GFI-1), a previously characterized ETO effector zinc finger protein, was shown to be enhanced by CBFA2T1, but to a lesser extent by CBFA2T2 and CBFA2T3. We therefore suggest that each of the various gene effector zinc finger proteins may specifically interact with one or more of the ETO proteins to generate a defined range of transcriptional repressor complexes. (Mol Cancer Res 2006;4(9):655 -65)
Activating mutations in exon 15 of BRAF have been detected in a high proportion of cutaneous melanomas. To determine whether such mutations are a feature of conjunctival or uveal melanomas, we screened DNA from these tumours. Twenty-one conjunctival and 88 uveal tumours were included in the study. Mutation analysis of BRAF exons 11 and 15 was undertaken using a combination of conformationally sensitive gel electrophoresis and direct sequencing. Mutations in exon 15 were detected in three of the conjunctival tumours (two V599E and one E585 K). None of the uveal tumours possessed a BRAF mutation in either exon 15 or 11. We conclude that uveal melanomas arise independently of oncogenic BRAF mutations, but the development of a proportion of conjunctival tumours involves mutation of this gene.
Amplification and/or overexpression of genes encoding tyrosine kinase receptors KIT and ERBB2 have been reported in testicular germ cell tumors (TGCTs). These receptors can bind the adaptor molecule GRB7 encoded by a gene adjacent to ERBB2 at 17q12, a region also frequently gained in TGCTs. GRB7 binding may be involved in the activation of RAS signaling and KRAS2 maps to 12p, which is constitutively gained in TGCT and lies within a minimum overlapping region of amplification at 12p11.2-12.1, a region we have previously defined. RAS proteins activate BRAF, and activating mutations of genes encoding these proteins have been described in various tumors. Here we determine the relationships between expression levels and activating mutations of these genes in a series of 65 primary TGCTs and 4 TCGT cell lines. High levels of expression and activating mutations in RAS were mutually exclusive events, and activating mutations in RAS were only identified in the seminoma subtype. Mutations in BRAF were not identified. Increased ERBB2 expression was associated with differentiated nonseminoma histology excised from lymph nodes postchemotherapy. Mutation, elevated expression, and correlations between expression levels of KRAS2, GRB7, and KIT are consistent with their involvement in the development of TGCTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.