Drosophila melanogaster
is a powerful model organism in which to address the genetics of cardiac patterning and heart development. This system allows the pairing of live imaging with the myriad available genetic and transgenic techniques to not only identify the genes that are critical for heart development, but to assess their impact on heart function in living organisms. There are several described methods to assess cardiac function in
Drosophila.
However, these approaches are restricted to imaging of mid- to late-instar larval and adult hearts. This technical hurdle therefore does not allow for the recording and analysis of cardiac function in embryos bearing strong mutations that do not hatch into larvae. Our technical innovation lies in transgenically labeling the cells of the
Drosophila
heart and using line scan-based confocal imaging to repeatedly image the walls of the heart. By plotting this line scan as a kymograph, heart contractions can be visualized and assayed, thereby allowing for quantification of physiological defects. This method can be used to obtain physiological data from known mutations that affect cardiac development yet are incapable of hatching into larvae for conventional analysis.
Use transgenic methods to label heart proper walls
Use high-speed line scanning to capture position of heart proper walls
Create X vs. time plot to visualize and quantify contractions over imaging period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.