Maternal exercise during pregnancy has been shown to improve the long‐term health of offspring in later life. Mitochondria are important organelles for maintaining adequate heart function, and mitochondrial dysfunction is linked to cardiovascular disease. However, the effects of maternal exercise during pregnancy on mitochondrial biogenesis in hearts are not well understood. Thus, the purpose of this study was to test the hypothesis that mitochondrial gene expression in fetal myocardium would be upregulated by maternal exercise. Twelve‐week‐old female C57BL/6 mice were divided into sedentary and exercise groups. Mice in the exercise group were exposed to a voluntary cage‐wheel from gestational day 1 through 17. Litter size and individual fetal weights were taken when pregnant dams were sacrificed at 17 days of gestation. Three to four hearts from the same group were pooled to study gene expression, protein expression, and enzyme activity. There were no significant differences in litter size, sex distribution, and average fetal body weight per litter between sedentary and exercised dams. Genes encoding mitochondrial biogenesis and dynamics, including nuclear respiratory factor‐1 (Nrf1), Nrf2, and dynamin‐related GTPase termed mitofusin‐2 (Mfn2) were significantly upregulated in the fetal hearts from exercised dams. Cytochrome c oxidase activity and ATP production were significantly increased, while the hydrogen peroxide level was significantly decreased in the fetal hearts by maternal exercise. Our results demonstrate that maternal exercise initiated at day 1 of gestation could transfer the positive mitochondrial phenotype to fetal hearts.
Natural bioactive compounds are proposed as alternatives in mitigating obesity-associated skeletal muscle dysfunction. The objective of this study was to test the hypothesis that the combination of geranylgeraniol (GGOH) and green tea polyphenols (GTPs) can alleviate high-fat-diet (HFD)-induced muscle atrophy and alter gut microbiome composition. Male C57BL/6J mice fed an HFD were assigned to four groups (12 mice each) in a 2 (no GGOH vs. 400 mg GGOH/kg diet) × 2 (no GTPs vs. 0.5% weight/volume GTPs in water) factorial design. After 14 weeks of diet intervention, skeletal muscle and cecal samples were collected and examined. Compared to the control groups, the group that consumed a combination of GGOH and GTPs (GG + GTPs) had significantly decreased body and fat mass but increased skeletal muscle mass normalized by body weight and cross-sectional area. In soleus muscle, the GG + GTP diet increased citrate synthase activity but decreased lipid peroxidation. Gut microbiome beta-diversity analysis revealed a significant difference in the microbiome composition between diet groups. At the species level, the GG + GTP diet decreased the relative abundance of Dorea longicatena, Sporobacter termitidis, and Clostridium methylpentosum, and increased that of Akkermansia muciniphila and Subdoligranulum variabile. These results suggest that the addition of GGOH and GTPs to an HFD alleviates skeletal muscle atrophy, which is associated with changes in the gut microbiome composition.
Maternal exercise during pregnancy has been shown to improve long-term metabolic health on offspring in later life. Mitochondria are the critical site of metabolism, and are inherited by maternal origin. However, the effects of maternal exercise during pregnancy on fetal mitochondrial biogenesis are not well understood. PURPOSE: To test whether maternal exercise can activate genes associate with mitochondrial biogenesis in the fetal heart. METHODS: Female C57BL/6 mice were divided into sedentary and exercise groups. The mice in the exercise group were exposed to voluntary cage-wheel from gestational day 1 through 17, at which time they were sacrificed. Litter size and individual fetal weights (3 days before birth) were taken when pregnant dams were sacrificed. All fetuses were sexed and two to three hearts from same sex within the group were pooled to study gene expression: all data were presented by group since there was no sex difference within group. RESULTS: Exercise dams ran an average of 7.22 ± 0.41km/day until mid-pregnancy and gradually decreased to low levels (1.39 ± 0.43 km/day) through the remainder of gestation. Weight gain during pregnancy was not significantly different between exercise (14.45 ± 0.99g) and sedentary (15.99 ± 1.13g) pregnant dams. There were no significant differences in litter size, sex distribution, and average fetal body weight per litter between sedentary and exercise dams. Genes associated with mitochondrial biogenesis, including Ppargc1a (peroxisome proliferator-activated receptor gamma, coactivator 1 alpha), Nrf1 (nuclear respiratory factor-1), and Nrf2 (nuclear respiratory factor-2) were significantly upregulated in fetuses from exercise dams. CONCLUSION: Although total kilometers run per day (km/day) were significantly decreased in later stage of pregnancy, maternal exercise initiated at day 1 of gestation significantly increased genes associated with mitochondria biogenesis, indicating that maternal exercise enhances mitochondrial biogenesis and mitochondrial function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.