IntroductionOver the past 10 years, there has been vast improvement in hardware architecture design for computer information, one of the most important functions being network analysis. The main problem with network analysis is the shortest path analysis. According to the network being analyzed, the shortest path has a variety of measurements, such as time, to find the path. The problem with determining the shortest path, however, is to find both the fastest and the shortest path. Thus, research in the shortest path always has been a point of interest in graph theory.Frequently, graphs are used along with modern technology in such setting as online social networks (e.g., LinkedIn ™ or Facebook). Since the size of the graphs is increasing exponentially, many direct processes become more demanding. For example, LinkedIna well-known website for professional networking-that tries to connect professionals together worldwide. If a person is trying to get in touch with someone from the human resource department in a company by using LinkedIn, what the website does is try to find the shortest path to reach that person in that specific company, starting from his connections and moving on to friends of friend to reach the desired personal in the specified company. Similarly, this application of the shortest path can be used over and over in different scenarios, for example, finding routes from one point to another point AbstractThe use of Big Data in today's world has become a necessity due to the massive number of technologies developed recently that keeps on providing us with data such as sensors, surveillance system and even smart phones and smart wearable devices they all tend to produce a lot of information that need to be analyzed and studied in details to provide us with some insight to what these data represent. In this paper we focus on the application of the techniques of data reduction based on data nodes in large networks datasets by computing data similarity computation, maximum similarity clique (MSC) and then finding the shortest path in a quick manner due to the data reduction in the graph. As the number of vertices and edges tend to increase on large networks the aim of this article is to make the reduction of the network that will cause an impact on calculating the shortest path for a faster analysis in a shortest time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.