Application design has been revolutionized with the adoption of microservices architecture. The ability to estimate end-to-end response latency would help software practitioners to design and operate microservices applications reliably and with efficient resource capacity. The objective of this research is to examine and compare data-driven approaches and a variety of resource metrics to predict end-to-end response latency of a containerized microservices workflow running in a cloud Kubernetes platform. We implemented and evaluated the prediction using a deep neural network and various machine learning techniques while investigating the selection of resource utilization metrics. Observed characteristics and performance metrics from both microservices and platform levels were used as prediction indicators. To compare performance models, we experimented with a benchmarking open-source Sock Shop containerized application. A deep neural network technique exhibited the best prediction accuracy using all metrics, while other machine learning techniques demonstrated acceptable performance using a subset of the metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.