Understanding the mechanism of chip formation during orthogonal cutting requires a local measurement of the displacement and strain fields in the cutting zone. These measurements can then be used in order to enhance/validate numerical simulation of metal cutting or calibrate material behavior laws for a better prediction of the thermomechanical loads inside the cutting zone. Particle tracking to identify the strain localization that is exhibited in the Adiabatic Shear Band (ASB) is a challenging task. These local measurements can be determined by images post-processing while using the Digital Image Correlation (DIC) technique or analytical models using streamline models or by micro grid analysis. Recently, the use of the DIC technique is widely increased. Texture quality has been shown to be an important factor. Various techniques of surface preparation are then discussed and classified in terms of the created pattern size. Tools for texture analysis are presented. The technique suitability for the kinematic fields measurement while using the DIC technique during machining is discussed. Various optical systems of the literature employed in the context of kinematic fields measurement during machining are discussed in this paper. The recent advances on the design of optical systems are given. Finally, the results of kinematic fields measurement during machining metallic alloys are analyzed.
In-situ visualization of the material flow during orthogonal cutting is achieved using new high-speed optical system. Difficulties arise from the submillimetric size of the cutting zone. Therefore, a dedicated optical system was designed allowing for local scale analysis of chip formation. The Digital Image Correlation (DIC) technique is applied on recorded images from the cutting zone to measure the kinematic fields. Then, the effect of the cutting conditions on chip formation is presented with local scale analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.