Objective.The current Juvenile Idiopathic Arthritis (JIA) Core Set used in randomized controlled trials (RCT) and longitudinal observational studies (LOS) was developed without the input of patients/parents. At the Outcome Measures in Rheumatology (OMERACT) 2016, a special interest group voted to reconsider the core set, incorporating broader input. We describe subsequent work culminating in an OMERACT 2018 plenary and consensus voting.Methods.Candidate domains were identified through literature review, qualitative surveys, and online discussion boards (ODB) held with patients with JIA and parents in Australia, Italy, and the United States. A Delphi process with parents, patients, healthcare providers, researchers, and regulators served to edit the domain list and prioritize candidate domains. After the presentation of results, OMERACT workshop participants voted, with consensus set at > 70%.Results.Participants in ODB were 53 patients with JIA (ages 15–24 yrs) and 55 parents. Three rounds of Delphi considering 27 domains were completed by 190 (response rate 85%), 201 (84%), and 182 (77%) people, respectively, from 50 countries. There was discordance noted between domains prioritized by patients/parents compared to others. OMERACT conference voting approved domains for JIA RCT and LOS with 83% endorsement. Mandatory domains are pain, joint inflammatory signs, activity limitation/physical function, patient’s perception of disease activity (overall well-being), and adverse events. Mandatory in specific circumstances: inflammation/other features relevant to specific JIA categories.Conclusion.Following the OMERACT methodology, we developed an updated JIA Core Domain Set. Next steps are to identify and systematically evaluate best outcome measures for these domains.
Background: Given thyroid hormone (TH)'s essential role in multiple aspects of early brain development, children with congenital hypothyroidism (CH) detected and treated early may still display subtle cognitive and behavioral impairments as well as brain abnormalities. However, effects on their cortical development are not yet known. We used an automated neuroimaging technique to determine if these children differ in cortical thickness (CT) from typically developing controls (TDC) and if the regions showing CT differences reflect severity of initial hypothyroidism and predict later neuropsychological functioning. Methods: FreeSurfer Image Analysis Suite was used on archived MRI scans from 41 CH and 42 TDC children aged 9-16 y. Vertex-based procedures were used to compare groups and perform correlations between CT and indices of disease severity and neuropsychological outcome. results: The CH group showed multiple regions of cortical thinning or cortical thickening within right and left hemispheres relative to TDC. CT values were significantly correlated with early T4 and thyroid-stimulating hormone (TSH) levels and current neuropsychological test indices. conclusion: The developing cortex is sensitive to early TH loss in CH. Different patterns of cortical thinning or cortical thickening among brain regions may reflect timing of TH deficiency relative to timing of cortical development.
In rodents, insufficient thyroid hormone (TH) gestationally has adverse effects on cerebral cortex development. Comparable studies of humans examining how TH insufficiency affects cortical morphology are limited to children with congenital hypothyroidism or offspring of hypothyroxinemic women; effects on cortex of children born to women with clinically diagnosed hypothyroidism are not known. We studied archived MRI scans from 22 children aged 10–12 years born to women treated for preexisting or de novo hypothyroidism in pregnancy (HYPO) and 24 similar age and sex controls from euthyroid women. FreeSurfer Image Analysis Suite software was used to measure cortical thickness (CT) and a vertex-based approach served to compare HYPO versus control groups and Severe versus Mild HYPO subgroups as well as to perform regression analyses examining effects of trimester-specific maternal TSH on CT. Results showed that relative to controls, HYPO had multiple regions of both cortical thinning and thickening, which differed for left and right hemispheres. In HYPO, thinning was confined to medial and mid-lateral regions of each hemisphere and thickening to superior regions (primarily frontal) of the left hemisphere and inferior regions (particularly occipital and temporal) of the right. The Severe HYPO subgroup showed more thinning than Mild in frontal and temporal regions and more thickening in bilateral posterior and frontal regions. Maternal TSH values predicted degree of thinning and thickening within multiple brain regions, with the pattern and direction of correlations differing by trimester. Notably, some correlations remained when cases born to women with severe hypothyroidism were removed from the analyses, suggesting that mild variations of maternal TH may permanently affect offspring cortex. We conclude that maternal hypothyroidism during pregnancy has long-lasting manifestations on the cortical morphology of their offspring with specific effects reflecting both severity and timing of maternal TH insufficiency.
Children with fetal alcohol spectrum disorder (FASD) exhibit behavioral dysregulation, executive dysfunction, and atypical function in associated brain regions. Previous research shows early intervention mitigates these outcomes but corresponding brain changes were not studied. Given the Alert® Program for Self-Regulation improves behavioral regulation and executive function in children with FASD, we asked if this therapy also improves their neural functioning in associated regions. Twenty-one children with FASD aged 8–12 years were randomized to the Alert®-treatment (TXT; n = 10) or waitlist-control (WL; n = 11) conditions. They were assessed with a Go-NoGo functional magnetic resonance imaging (fMRI) paradigm before and after training or the wait-out period. Groups initially performed equivalently and showed no fMRI differences. At post-test, TXT outperformed WL on NoGo trials while fMRI in uncorrected results with a small-volume correction showed less activation in prefrontal, temporal, and cingulate regions. Groups also demonstrated different patterns of change over time reflecting reduced signal at post-test in selective prefrontal and parietal regions in TXT and increased in WL. In light of previous evidence indicating TXT at post-test perform similar to non-exposed children on the Go-NoGo fMRI paradigm, our findings suggest Alert® does improve functional integrity in the neural circuitry for behavioral regulation in children with FASD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.