Sixty percent of global agricultural production depends on the use of pesticides, despite their adverse effects on human health and the ecosystem. In Mexico, the application of these products has been exacerbated, including pesticides already banned in other countries. The objective of this study was to determine pesticide concentrations in samples of water purification plants and surface water from the Cienega area of Jalisco, Mexico. A survey of 119 farmers with occupational exposure to pesticides was carried out in order to obtain information on the most frequently used pesticides. Subsequently, 51 samples taken at 7 different sites were analyzed using liquid chromatography and mass-mass spectrometry. The most frequently used pesticides were organophosphates (28.87%), pyrethroids (12.89%), and the herbicide paraquat (31.95%). In surface water, the prevalent pesticides were glyphosate (56.96–510.46 ppb) and malathion (311.76–863.49 ppb). Glyphosate levels were higher than the limits acceptable in daily water intake in Cumuato. Malathion levels exceeded the limits permissible by EPA in water purification plants in urban public establishments (100 ppb for children, and 200 ppb for adults). In addition, a multidimensional scaling analysis showed that the sampled sites could be grouped into 2 different bodies of water, based on similarities in their glyphosate concentrations (stress = 0.005), while the concentrations of malathion were heterogeneous (stress = 0.001).
Pesticides are chemical substances used to control, prevent, or destroy agricultural, domestic, and livestock pests. These compounds produce adverse changes in health, and they have been associated with the development of multiple chronic diseases. This study aimed to present a detailed review of the effect of pesticides on the oral cavity and the oral microbiome. In the oral cavity, pesticides alter and/or modify tissues and the microbiome, thereby triggering imbalance in the ecosystem, generating an inflammatory response, and activating hydrolytic enzymes. In particular, the imbalance in the oral microbiome creates a dysbiosis that modifies the number, composition, and/or functions of the constituent microorganisms and the local response of the host. Pesticide exposure alters epithelial cells, and oral microbiota, and disrupts the homeostasis of the oral environment. The presence of pesticides in the oral cavity predisposes the appearance of pathologies such as caries, periodontal diseases, oral cancer, and odontogenic infections. In this study, we analyzed the effect of organochlorines, organophosphates, pyrethroids, carbamates, bipyridyls, and triazineson oral cavity health and ecosystems.
By January of 2023, the COVID-19 pandemic had led to a reported total of 6,700,883 deaths and 662,631,114 cases worldwide. To date, there have been no effective therapies or standardized treatment schemes for this disease; therefore, the search for effective prophylactic and therapeutic strategies is a primary goal that must be addressed. This review aims to provide an analysis of the most efficient and promising therapies and drugs for the prevention and treatment of severe COVID-19, comparing their degree of success, scope, and limitations, with the aim of providing support to health professionals in choosing the best pharmacological approach. An investigation of the most promising and effective treatments against COVID-19 that are currently available was carried out by employing search terms including “Convalescent plasma therapy in COVID-19” or “Viral polymerase inhibitors” and “COVID-19” in the Clinicaltrials.gov and PubMed databases. From the current perspective and with the information available from the various clinical trials assessing the efficacy of different therapeutic options, we conclude that it is necessary to standardize certain variables—such as the viral clearance time, biomarkers associated with severity, hospital stay, requirement of invasive mechanical ventilation, and mortality rate—in order to facilitate verification of the efficacy of such treatments and to better assess the repeatability of the most effective and promising results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.